Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240466
Palindromes for which both the numerator (A017665) and the denominator (A017666) of sigma(n)/n are palindromes, where sigma is the sum of divisors (A000203).
0
1, 2, 3, 4, 5, 6, 7, 333, 17571, 40004, 93939, 569965, 1787871, 2316132, 541626145, 17575757571, 5806270726085, 7359770779537, 520524424425025, 17275787578757271, 17878787578787871
OFFSET
1,2
COMMENTS
Compare with A028986 (Palindromes whose sum of divisors is palindromic).
These terms of A028986 also belong here: 1, 2, 3, 4, 5, 7, 333, 17571, 1787871, 541626145, 17575757571, 5806270726085, 7359770779537.
a(22) > 10^18. - Hiroaki Yamanouchi, Sep 27 2014
PROG
(PARI) reverse(expr)=my(v=Vec(Str(expr)), n=length(v)); eval(concat(vector(n, i, v[n-i+1])));
isok(n) = (rn = reverse(n)) && (rn == n) && (ab = sigma(n)/n) && (abr = sigma(rn)/rn) && (numerator(abr) == reverse(numerator(ab))) && (denominator(abr) == reverse(denominator(ab)));
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Michel Marcus, Apr 06 2014
EXTENSIONS
a(16)-a(21) from Hiroaki Yamanouchi, Sep 27 2014
STATUS
approved