OFFSET
0,1
COMMENTS
Limit as n increases without bound of the probability that n mod m is less than m/2, with m chosen uniformly at random from 1..n. (As usual, 0 <= n mod m < m.)
LINKS
Jean-Paul Allouche and Jeffrey Shallit, Sums of digits and the Hurwitz zeta function, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.
FORMULA
From Amiram Eldar, Aug 15 2020: (Start)
Equals Sum_{k>=1} 1/(2*k^2 + k).
Equals -Integral_{x=0..1} log(1-x^2) dx. (End)
Equals Sum_{k>=1} A023416(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
Equals 1/(1 + 2/(3 + 1^2/(4 + 3^2/(5 + 2^2/(6 + 4^2/(7 + 3^2/(8 + 5^2/(9 + 4^2/(10 + 6^2/(11 + ... + (n-1)^2/((2*n) + (n+1)^2/((2*n+1) + ... )))))))))))). Cf. A016639. - Peter Bala, Mar 04 2024
EXAMPLE
0.61370563888010938116553575708364686384899973127949...
MATHEMATICA
RealDigits[2 - Log[4], 10, 120][[1]]
PROG
(PARI) vecextract(eval(Vec(Str(2-log(4)))), "3..")
CROSSREFS
KEYWORD
AUTHOR
Charles R Greathouse IV, Apr 12 2011
STATUS
approved