Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173124
a(n) = binomial(n+10,10)*6^n.
1
1, 66, 2376, 61776, 1297296, 23351328, 373621248, 5444195328, 73496636928, 930957401088, 11171488813056, 127964326404096, 1407607590445056, 14942295960109056, 153692187018264576, 1536921870182645760, 14984988234280796160, 142798123173734645760, 1332782482954856693760
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n>=10) of 7 objects: r, s, t, u, v, z, x, with repetition allowed, containing exactly 10 u's.
LINKS
Index entries for linear recurrences with constant coefficients, signature (66,-1980,35640,-427680,3592512,-21555072,92378880,-277136640,554273280,-665127936,362797056).
FORMULA
From Chai Wah Wu, Nov 12 2021: (Start)
a(n) = 66*a(n-1) - 1980*a(n-2) + 35640*a(n-3) - 427680*a(n-4) + 3592512*a(n-5) - 21555072*a(n-6) + 92378880*a(n-7) - 277136640*a(n-8) + 554273280*a(n-9) - 665127936*a(n-10) + 362797056*a(n-11) for n > 10.
G.f.: -1/(6*x - 1)^11. (End)
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 897363955/42 - 117187500*log(6/5).
Sum_{n>=0} (-1)^n/a(n) = 2421216420*log(7/6) - 2239392937/6. (End)
MATHEMATICA
Table[Binomial[n + 10, 10]*6^n, {n, 0, 20}]
PROG
(Magma) [6^n* Binomial(n+10, 10): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 10 2010
STATUS
approved