Nothing Special   »   [go: up one dir, main page]

login
A168258
Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.
3
1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 3, 3, 3, 2, 1, 3, 3, 3, 3, 2, 1, 4, 4, 4, 4, 3, 2, 1, 4, 4, 4, 4, 4, 3, 2, 1, 5, 5, 5, 5, 5, 4, 3, 2, 1, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1, 6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1
OFFSET
1,4
COMMENTS
Row sums = A001318, general pentagonal numbers: (1, 2, 5, 12, 15, 22, ...).
Eigensequence of the triangle = A168259: (1, 2, 6, 14, 38, 96, 254, 656, ...).
The operation A101688 * A000012 transforms rows of A101688 into sequence terms by taking partial sums from the right of A101688 rows. For example, row 3 of A101688 (0, 0, 1, 1) becomes (2, 2, 2, 1). - Gary W. Adamson, Nov 15 2022
FORMULA
Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.
a(n) = min(A004736, A204164); a(n) = min(j, floor((t+2)/2)), where j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 18 2013
EXAMPLE
First few rows of the triangle:
1;
1, 1;
2, 2, 1;
2, 2, 2, 1;
3, 3, 3, 2, 1;
3, 3, 3, 3, 2, 1;
4, 4, 4, 4, 3, 2, 1;
4, 4, 4, 4, 4, 3, 2, 1;
5, 5, 5, 5, 5, 4, 3, 2, 1;
5, 5, 5, 5, 5, 5, 4, 3, 2, 1;
6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1;
6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1;
7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1;
7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1;
8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1;
...
PROG
(PARI) T(n, k) = if(binomial(k, n-k)>0, 1, 0); \\ A101688
lista(nn) = my(ma=matrix(nn+1, nn, n, k, T(n-1, k-1)), mb=matrix(nn, nn, n, k, n>=k)); my(m=ma*mb, list=List()); for (n=1, nn, listput(list, vector(n, k, m[n, k]))); Vec(list); \\ Michel Marcus, Nov 16 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 21 2009
EXTENSIONS
Name corrected by Gary W. Adamson, Nov 15 2022
STATUS
approved