Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n + 1)^2*a(n).
4

%I #25 Dec 10 2024 09:03:22

%S 1,5,29,190,1414,11820,110004,1129200,12686256,154896480,2043108000,

%T 28958014080,438997622400,7088892491520,121487996448000,

%U 2202440792832000,42113131054848000,847071044402688000

%N a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n + 1)^2*a(n).

%C This is the case m = 2 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.

%H Seiichi Manyama, <a href="/A142980/b142980.txt">Table of n, a(n) for n = 1..448</a>

%F a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n^2 + 2*n + 1 = A001844(n) is the Ehrhart polynomial for the 2-dimensional cross polytope (a square).

%F Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n+1)^2*a(n).

%F The sequence b(n) := n!*p(n) satisfies the same recurrence with b(1) = 5, b(2) = 26.

%F Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + (n-1)^2/5)))), for n >= 2.

%F The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + n^2/(5 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4*k^4 + 1)) = log(2) - (1 - 1/2); the final equality is a result of Glaisher.

%F Thus a(n) ~ c*n^2*n! as n -> oo, where c = 2*log(2) - 1.

%F From _Peter Bala_, Dec 09 2024: (Start)

%F E.g.f.: A(x) = ((1 + x)^2 *log(1 + x) - 2*x^2)/(1 - x)^3 satisfies the differential equation 1 + (x + 5)*A(x) + (x^2 - 1)*A(x)' with A(0) = 0.

%F Sum_{k = 1..n} Stirling2(n, k)*a(k) = A135148(n+1). (End)

%p p := n -> 2*n^2+ 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)

%Y Cf. A024167, A135148, A142979, A142981, A142982.

%K easy,nonn,changed

%O 1,2

%A _Peter Bala_, Jul 17 2008