OFFSET
0,2
LINKS
FORMULA
a(n) = n*(n+23)/2.
Let f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,12), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 11, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=12, a(2)=25, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 21 2011
a(n) = 12*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/23 - 3825136961/61573632120. (End)
MATHEMATICA
Table[n (n + 23)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 12, 25}, 50] (* Harvey P. Dale, Jun 21 2011 *)
PROG
(PARI) a(n)=n*(n+23)/2 \\ Charles R Greathouse IV, Jun 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved