Nothing Special   »   [go: up one dir, main page]

login
A103157
Number of ways to choose 4 distinct points from an (n+1) X (n+1) X (n+1) lattice cube.
4
70, 17550, 635376, 9691375, 88201170, 566685735, 2829877120, 11671285626, 41417124750, 130179173740, 370215608400, 968104633665, 2357084537626, 5396491792125, 11710951848960, 24246290643940, 48151733324310, 92140804597626, 170538695998000, 306294282269955
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = binomial((n+1)^3, 4).
G.f.: -x*(x^10 + 317*x^9 + 23193*x^8 + 435669*x^7 + 2747685*x^6 + 6738399*x^5 + 6803373*x^4 + 2780367*x^3 + 412686*x^2 + 16640*x + 70)/(x -1)^13. - Colin Barker, Nov 16 2012
CROSSREFS
Cf. 4-point objects in lattice cube: A103158 tetrahedra, A103656 triangular pyramids, A103657 number of different volumes, A103658 volume=0, A103659, A103660 most frequent volumes, A103661 smallest not occurring volume.
Sequence in context: A362169 A231054 A007100 * A364305 A007099 A004109
KEYWORD
easy,nonn
AUTHOR
Hugo Pfoertner, Feb 12 2005
STATUS
approved