Nothing Special   »   [go: up one dir, main page]

login
A088032
Smallest number k such that k^n -1 is divisible by an n-th power. a(n) = A088031(n)^(1/n).
2
3, 3, 9, 3, 33, 31, 129, 31, 513, 511, 2049, 1023, 8193, 8191, 32769, 4095, 131073, 131071, 524289, 262143, 2097153, 2097151, 8388609, 2097151
OFFSET
1,1
COMMENTS
For 2 < n < 18, if n is odd then a(n) = 2^n+1 and if n is even then a(n) = 2^(n-A007814(n))-1. - David Wasserman, Jun 21 2005
The above also holds for 19 < n < 24. If true for n >= 25 then a(25..29) = 33554433, 33554431, 134217729, 67108863, 536870913. - Lars Blomberg, Feb 09 2016
EXAMPLE
a(4) = 81 = 3^4 and 81-1 = 80 == 0 (mod 2^4).
CROSSREFS
Cf. A088031.
Sequence in context: A337461 A157031 A113213 * A348397 A377398 A066572
KEYWORD
more,nonn
AUTHOR
Amarnath Murthy, Sep 19 2003
EXTENSIONS
Corrected and extended by Ray Chandler, Oct 04 2003
More terms from David Wasserman, Jun 21 2005
More terms from Ryan Propper, Jul 21 2006
a(21)-a(24) from Lars Blomberg, Feb 09 2016
STATUS
approved