Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071600
Numbers n such that n and prime(n) have the same number of 1's in their binary representation.
9
1, 3, 13, 19, 21, 23, 25, 30, 44, 45, 47, 57, 60, 61, 71, 77, 98, 99, 101, 103, 107, 108, 110, 118, 121, 125, 158, 159, 178, 179, 184, 186, 187, 188, 209, 215, 218, 221, 237, 244, 246, 247, 248, 249, 251, 279, 287, 312, 334, 335, 346, 350, 359, 361, 362, 365
OFFSET
1,2
COMMENTS
a(n) = A049084(A072439(n)); A000120(a(n)) = A000120(A072439(n)) = A014499(n). - Reinhard Zumkeller, Jun 17 2002
A090455(a(n))=0, A000120(a(n))=A014499(a(n)).
LINKS
EXAMPLE
221=11011101 in base 2, prime(221)=1381=10101100101 in base 2, both have 6 "1's" in their binary representation, hence 221 is in the sequence.
MATHEMATICA
Select[Range[400], DigitCount[#, 2, 1]==DigitCount[Prime[#], 2, 1]&] (* Harvey P. Dale, Mar 09 2015 *)
PROG
(PARI) for(n=1, 1000, s=1; if(sum(i=1, length(binary(n)), component(binary(n), i))==sum(i=1, length(binary(prime(n))), component(binary(prime(n)), i)), print1(n, ", ")))
(PARI) is(n)=hammingweight(n)==hammingweight(prime(n)) \\ Charles R Greathouse IV, Mar 07 2013
CROSSREFS
Cf. A033549.
Sequence in context: A024685 A024474 A024599 * A260802 A338341 A045435
KEYWORD
base,easy,nonn
AUTHOR
Benoit Cloitre, Jun 01 2002
STATUS
approved