Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071605
Number of ordered pairs (a,b) of elements of the symmetric group S_n such that the pair a,b generates S_n.
7
1, 3, 18, 216, 6840, 228960, 15573600, 994533120, 85232891520, 8641918252800, 1068888956889600, 155398203460684800, 26564263279602048000
OFFSET
1,2
COMMENTS
a(n) is an Eulerian function of S_n. - Kenneth G. Hawes, Nov 25 2019
LINKS
L. Babai, The probability of generating the symmetric group, J. Combin. Theory, A52 (1989), 148-153.
J. D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969) 199-205.
J. D. Dixon, Problem 923 (BCC20.17), Indecomposable permutations and transitive groups, in Research Problems from the 20th British Combinatorial Conference, Discrete Math., 308 (2008), 621-630.
P. Hall, The Eulerian functions of a group, Quart. J. Math. 7 (1936), 134-151.
T. Luczak and L. Pyber, On random generation of the symmetric group, Combin. Probab. Comput., 2 (1993), 505-512.
A. Maroti and C. M. Tamburini, Bounds for the probability of generating the symmetric and alternating groups, Arch. Math. (Basel), 96 (2011), 115-121.
FORMULA
Except for n=2 (because of the "replacement") in A040175, a(n) = n! * A040175(n).
a(n) = 2 * A001691(n) for n > 2.
PROG
(GAP)
a := function(n)
local tom, mu, lens, orders, num, k;
tom := TableOfMarks(Concatenation("S", String(n)));
if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi;
mu := MoebiusTom(tom).mu;
lens := LengthsTom(tom);
orders := OrdersTom(tom);
num := 0;
for k in [1 .. Length(lens)] do
if IsBound(mu[k]) then
num := num + mu[k] * lens[k] * orders[k]^2;
fi;
od;
return num;
end; # Stephen A. Silver, Feb 20 2013
CROSSREFS
Sequence in context: A132727 A111841 A279233 * A340336 A222686 A274271
KEYWORD
nonn,more,nice
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), Jun 02 2002
EXTENSIONS
a(10)-a(13) added by Stephen A. Silver, Feb 20 2013
STATUS
approved