Nothing Special   »   [go: up one dir, main page]

login
A070393
a(n) = 6^n mod 13.
1
1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3
OFFSET
0,2
COMMENTS
Period 12: repeat [1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11]. - Harvey P. Dale, Feb 26 2014
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-6) + a(n-7).
G.f.: (-1-5*x-4*x^2+2*x^3-x^4+7*x^5-11*x^6)/((x-1)*(x^2+1)*(x^4-x^2+1)). (End)
a(n) = a(n-12). - G. C. Greubel, Mar 18 2016
MATHEMATICA
PowerMod[6, Range[0, 100], 13] (* Harvey P. Dale, Feb 26 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, -1, 1}, {1, 6, 10, 8, 9, 2, 12}, 100] (* Harvey P. Dale, Feb 26 2014 *)
PROG
(Sage) [power_mod(6, n, 13)for n in range(0, 93)] # Zerinvary Lajos, Nov 26 2009
(PARI) a(n) = lift(Mod(6, 13)^n); \\ Altug Alkan, Mar 18 2016
CROSSREFS
Sequence in context: A010726 A084365 A066135 * A071630 A334937 A003862
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved