Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060300
a(n) = (2n(n+1))^2.
10
0, 16, 144, 576, 1600, 3600, 7056, 12544, 20736, 32400, 48400, 69696, 97344, 132496, 176400, 230400, 295936, 374544, 467856, 577600, 705600, 853776, 1024144, 1218816, 1440000, 1690000, 1971216, 2286144, 2637376, 3027600
OFFSET
0,2
COMMENTS
Arises from middle column of following triangle: 4^2, 12^2, 24^2,...:
....................... 3^2 + 4^2 = 5^2
............... 10^2 + 11^2 + 12^2 = 13^2 + 14^2
........ 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2
. 36^2 + 37^2 + 38^2 + 39^2 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2, etc.
REFERENCES
C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, pp. 90-92.
FORMULA
G.f.: 16*x*(1+4*x+x^2)/(1-x)^5. [Colin Barker, Apr 22 2012]
a(n) = 4*A035287(n+1) = 4*A002378(n)^2. - Michel Marcus, May 24 2016
a(n) = 16 * A000537(n) = 16 * (n*(n+1)/2)^2 = 16 * A000217(n)^2 = A046092(n)^2. - Bruce J. Nicholson, Jun 05 2017
a(n) = Integral_{x=1..2*n+1} (x^3-x) dx. - César Aguilera, Jun 27 2020
MATHEMATICA
CoefficientList[Series[16 x (1 + 4 x + x^2) / (1 - x)^5, {x, 0, 33}], x] (* Vincenzo Librandi, Nov 18 2016 *)
Table[(2n(n+1))^2, {n, 0, 30}] (* Harvey P. Dale, Jan 19 2019 *)
PROG
(PARI) { for (n=0, 1000, write("b060300.txt", n, " ", (2*n*(n + 1))^2); ) } \\ Harry J. Smith, Jul 03 2009
(Magma) [(2*n*(n+1))^2: n in [0..30]]; // Vincenzo Librandi, Nov 18 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jason Earls, Mar 25 2001
EXTENSIONS
Corrected the definition from 2n(n+1)^2 to (2n(n+1))^2. - Harry J. Smith, Jul 03 2009
STATUS
approved