Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*n^2 + 1.
69

%I #137 Sep 08 2022 08:45:00

%S 1,5,17,37,65,101,145,197,257,325,401,485,577,677,785,901,1025,1157,

%T 1297,1445,1601,1765,1937,2117,2305,2501,2705,2917,3137,3365,3601,

%U 3845,4097,4357,4625,4901,5185,5477,5777,6085,6401,6725,7057

%N a(n) = 4*n^2 + 1.

%C Subsequence of A004613: all numbers in this sequence have all prime factors of the form 4k+1. E.g., 40001 = 13*17*181, 13 = 4*3 + 1, 17 = 4*4 + 1, 181 = 4*45 + 1. - _Cino Hilliard_, Aug 26 2006, corrected by _Franklin T. Adams-Watters_, Mar 22 2011

%C A000466(n), A008586(n) and a(n) are Pythagorean triples. - _Zak Seidov_, Jan 16 2007

%C Solutions x of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0, 1, 2, ... - _Michel Lagneau_, Feb 12 2010

%C Ulam's spiral (NW spoke). - _Robert G. Wilson v_, Oct 31 2011

%C For n >= 1, a(n) is numerator of radius r(n) of circle with sagitta = n and cord length = 1. The denominator is A008590(n). - _Kival Ngaokrajang_, Jun 13 2014

%C a(n)+6 is prime for n = 0..6 and for n = 15..20. - _Altug Alkan_, Sep 28 2015

%D Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1 Nr. 11, p. 19.

%H Vincenzo Librandi, <a href="/A053755/b053755.txt">Table of n, a(n) for n = 0..1000</a>

%H Tom M. Apostol, <a href="https://archive.org/details/introductiontoan00apos_0/page/2/mode/2up">Introduction to Analytic Number Theory</a>, Springer-Verlag, 1976, page 3.

%H Roland Bacher, <a href="https://doi.org/10.37236/2522">Counting Packings of Generic Subsets in Finite Groups</a>, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013

%H Kival Ngaokrajang, <a href="/A053755/a053755.pdf">Illustration of initial terms</a>.

%H Robert G. Wilson v, <a href="/A244677/a244677.jpg">Cover of the March 1964 issue of Scientific American</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = A000466(n) + 2. - _Zak Seidov_, Jan 16 2007

%F From _R. J. Mathar_, Apr 28 2008: (Start)

%F O.g.f.: (1 + 2*x + 5*x^2)/(1-x)^3.

%F a(n) = 3a(n-1) - 3a(n-2) + a(n-3). (End)

%F Equals binomial transform of [1, 4, 8, 0, 0, 0, ...]. - _Gary W. Adamson_, Apr 30 2008

%F a(n) = A156701(n)/A087475(n). - _Reinhard Zumkeller_, Feb 13 2009

%F For n>0: a(n) = A176271(2*n,n+1); cf. A016754, A000466. - _Reinhard Zumkeller_, Apr 13 2010

%F a(n+1) = denominator of Sum_{k=0..n} (-1)^n*(2*n + 1)^3/((2*n + 1)^4 + 4), see Knuth reference. - _Reinhard Zumkeller_, Apr 11 2010

%F a(n) = 8*n + a(n-1) - 4. with a(0)=1. - _Vincenzo Librandi_, Aug 06 2010

%F a(n) = ((2*n - 1)^2 + (2*n + 1)^2)/2. - _J. M. Bergot_, May 31 2012

%F a(n) = 2*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=5. - _Vincenzo Librandi_, Jun 26 2013

%F a(n+1) = a(n) + A017113(n), a(0) = 1. - _Altug Alkan_, Sep 26 2015

%F a(n) = A001844(n) + A046092(n-1) = A001844(n-1) + A046092(n). - _Bruce J. Nicholson_, Aug 07 2017

%F From _Amiram Eldar_, Jul 15 2020: (Start)

%F Sum_{n>=0} 1/a(n) = (1 + (Pi/2)*coth(Pi/2))/2.

%F Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/2)*csch(Pi/2))/2. (End)

%F From _Amiram Eldar_, Feb 05 2021: (Start)

%F Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/2)*sinh(Pi/sqrt(2)).

%F Product_{n>=1} (1 - 1/a(n)) = (Pi/2)*csch(Pi/2). (End)

%F E.g.f.: exp(x)*(1 + 2*x)^2. - _Stefano Spezia_, Jun 10 2021

%p with (combinat):seq(fibonacci(3,2*n), n=0..42); # _Zerinvary Lajos_, Apr 21 2008

%t f[n_] := 4n^2 +1; Array[f, 40] (* _Vladimir Joseph Stephan Orlovsky_, Sep 02 2008 *)

%t CoefficientList[Series[(1 + 2 x + 5 x^2) / (1 - x)^3, {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 26 2013 *)

%t LinearRecurrence[{3,-3,1},{1,5,17},50] (* _Harvey P. Dale_, Dec 28 2021 *)

%o (PARI) for(x=0,100,print1(4*x^2+1",")) \\ _Cino Hilliard_, Aug 26 2006

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+5*x^2)/((1-x)^3))); /* or */ I:=[1,5]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+8: n in [1..50]]; // _Vincenzo Librandi_, Jun 26 2013

%o (Haskell)

%o a053755 = (+ 1) . (* 4) . (^ 2) -- _Reinhard Zumkeller_, Apr 20 2015

%o (Python) for n in range(0,50): print(4*n**2+1, end=', ') # _Stefano Spezia_, Nov 01 2018

%o (GAP) List([0..45],n->4*n^2+1); # _Muniru A Asiru_, Nov 01 2018

%Y Column 2 of array A188647.

%Y Cf. A016742, A256970 (smallest prime factors), A214345.

%Y Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.

%Y Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.

%Y Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

%Y Cf. A000466, A001844, A004613, A008586, A008590, A017113, A046092, A087475, A156701, A176271.

%K nonn,easy

%O 0,2

%A Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 06 2000

%E Equation corrected, and examples that were based on a different offset removed, by _R. J. Mathar_, Mar 18 2010