Nothing Special   »   [go: up one dir, main page]

login
A053549
Number of labeled rooted connected graphs.
13
0, 1, 2, 12, 152, 3640, 160224, 13063792, 2012388736, 596666619648, 344964885948160, 392058233038486784, 880255154481199466496, 3916538634445633156373504, 34603083354426212294072477696, 607915214065957203519146330173440
OFFSET
0,3
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 10, R_p.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20, G(x).
LINKS
FORMULA
E.g.f.: (Sum_{n>1} 2^binomial(n, 2)*x^n/(n-1)!)/(Sum_{n>=0} 2^binomial(n, 2)*x^n/n!).
a(n) = n * A001187(n).
MAPLE
add(2^binomial(n, 2)*x^n/(n-1)!, n=1..31)/add(2^binomial(n, 2)*x^n/n!, n=0..31);
MATHEMATICA
f[x_, lim_] := Sum[2^Binomial[n, 2]*x^n/(n - 1)!, {n, 1, lim}] / Sum[2^Binomial[n, 2]*x^n/n!, {n, 0, lim}]; nn = 15; Range[0, nn]! CoefficientList[Series[f[x, nn], {x, 0, nn}], x] (* T. D. Noe, Oct 21 2011 *)
PROG
(PARI) q=30; my(x='x+O('x^20)); concat([0], Vec(serlaplace( sum(j=1, q, 2^binomial(j, 2)*x^j/(j-1)!)/(sum(k=0, q, 2^binomial(k, 2)*x^k/k!)) ))) \\ G. C. Greubel, May 16 2019
(Magma) q:=30; m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[2^Binomial(j, 2)*x^j/Factorial(j-1): j in [1..q]])/(&+[2^Binomial(k, 2)*x^k/Factorial(k):k in [0..q]]) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 16 2019
(Sage) q=30; m = 20; T = taylor(sum(2^binomial(j, 2)*x^j/factorial(j-1) for j in (1..q))/(sum(2^binomial(k, 2)*x^k/factorial(k) for k in (0..q))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A006125.
Sequence in context: A000795 A085628 A177777 * A139383 A216351 A365863
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 16 2000
STATUS
approved