Nothing Special   »   [go: up one dir, main page]

login
Numerators of continued fraction convergents to sqrt(153).
2

%I #15 Oct 19 2021 21:29:57

%S 12,25,37,99,235,569,804,2177,53052,108281,161333,430947,1023227,

%T 2477401,3500628,9478657,230988396,471455449,702443845,1876343139,

%U 4455130123,10786603385,15241733508,41270070401,1005723423132,2052716916665,3058440339797,8169597596259

%N Numerators of continued fraction convergents to sqrt(153).

%H Vincenzo Librandi, <a href="/A041280/b041280.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,4354,0,0,0,0,0,0,0,-1).

%F G.f.: -(x +1)*(x^14 -13*x^13 +38*x^12 -75*x^11 +174*x^10 -409*x^9 +978*x^8 -1782*x^7 -395*x^6 -409*x^5 -160*x^4 -75*x^3 -24*x^2 -13*x -12) / ((x^4 -8*x^2 -1)*(x^4 +8*x^2 -1)*(x^8 +66*x^4 +1)). - _Colin Barker_, Nov 06 2013

%F a(n) = 4354*a(n-8) - a(n-16). - _Wesley Ivan Hurt_, Oct 19 2021

%t Numerator[Convergents[Sqrt[153], 30]] (* _Vincenzo Librandi_, Nov 01 2013 *)

%Y Cf. A041281.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 06 2013