Nothing Special   »   [go: up one dir, main page]

login
A047241
Numbers that are congruent to {1, 3} mod 6.
30
1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49, 51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99, 103, 105, 109, 111, 115, 117, 121, 123, 127, 129, 133, 135, 139, 141, 145, 147, 151, 153, 157, 159, 163, 165, 169, 171, 175, 177, 181, 183
OFFSET
1,2
COMMENTS
Also the numbers k such that 10^p+k could possibly be prime. - Roderick MacPhee, Nov 20 2011 This statement can be written as follows. If 10^m + k = prime, for any m >= 1, then k is in this sequence. See the pink box comments by Roderick MacPhee from Dec 09 2014. - Wolfdieter Lang, Dec 09 2014
The odd-indexed terms are one more than the arithmetic mean of their neighbors; the even-indexed terms are one less than the arithmetic mean of their neighbors. - Amarnath Murthy, Jul 29 2003
Partial sums are A212959. - Philippe Deléham, Mar 16 2014
12*a(n) is conjectured to be the length of the boundary after n iterations of the hexagon and square expansion shown in the link. The squares and hexagons have side length 1 in some units. The pattern is supposed to become the planar Archimedean net 4.6.12 when n -> infinity. - Kival Ngaokrajang, Nov 30 2014
Positive numbers k for which 1/2 + k/3 + k^2/6 is an integer. - Bruno Berselli, Apr 12 2018
REFERENCES
L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics, Springer (2003); 14.4, p. 225.
LINKS
L. Lovász, J. Pelikán and K. Vesztergombi, Discrete Mathematics, Elementary and Beyond, Springer (2003); 14.4, p. 225.
Kival Ngaokrajang, Illustration of initial terms.
FORMULA
From Paul Barry, Sep 04 2003: (Start)
O.g.f.: (1 + 2*x + 3*x^2)/((1 + x)*(1 - x)^2) = (1 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)).
E.g.f.: (6*x + 1)*exp(x)/2 + exp(-x)/2;
a(n) = 3*n - 5/2 - (-1)^n/2. (End)
a(n) = 2*floor((n-1)/2) + 2*n - 1. - Gary Detlefs, Mar 18 2010
a(n) = 6*n - a(n-1) - 8 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 05 2010
a(n) = 3*n - 2 - ((n+1) mod 2). - Wesley Ivan Hurt, Jun 29 2013
a(1)=1, a(2)=3, a(3)=7; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 01 2013
From Benedict W. J. Irwin, Apr 13 2016: (Start)
A005408(a(n)+1) = A016813(A001651(n)),
A007310(a(n)) = A005408(A087444(n)-1),
A007310(A005408(a(n)+1)) = A017533(A001651(n)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + log(3)/4. - Amiram Eldar, Dec 11 2021
MAPLE
seq(3*k-2-((k+1) mod 2), k=1..100); # Wesley Ivan Hurt, Sep 28 2013
MATHEMATICA
Table[{2, 4}, {30}] // Flatten // Prepend[#, 1]& // Accumulate (* Jean-François Alcover, Jun 10 2013 *)
Select[Range[200], MemberQ[{1, 3}, Mod[#, 6]]&] (* or *) LinearRecurrence[{1, 1, -1}, {1, 3, 7}, 70] (* Harvey P. Dale, Oct 01 2013 *)
PROG
(Haskell)
a047241 n = a047241_list !! (n-1)
a047241_list = 1 : 3 : map (+ 6) a047241_list
-- Reinhard Zumkeller, Feb 19 2013
(PARI) a(n)=bitor(3*n-3, 1) \\ Charles R Greathouse IV, Sep 28 2013
(Python) for n in range(1, 10**5):print(3*n-2-((n+1)%2)) # Soumil Mandal, Apr 14 2016
CROSSREFS
Subsequence of A186422.
Union of A016921 and A016945. - Wesley Ivan Hurt, Sep 28 2013
Sequence in context: A235387 A285144 A356138 * A086515 A132222 A340933
KEYWORD
nonn,easy
EXTENSIONS
Formula corrected by Bruno Berselli, Jun 24 2010
STATUS
approved