Nothing Special   »   [go: up one dir, main page]

login
A046132
Larger member p+4 of cousin primes (p, p+4).
73
7, 11, 17, 23, 41, 47, 71, 83, 101, 107, 113, 131, 167, 197, 227, 233, 281, 311, 317, 353, 383, 401, 443, 461, 467, 491, 503, 617, 647, 677, 743, 761, 773, 827, 857, 863, 881, 887, 911, 941, 971, 1013, 1091, 1097, 1217, 1283, 1301, 1307, 1427, 1433
OFFSET
1,1
COMMENTS
A pair of cousin primes are primes of the form p and p+4 (where p+2 may or may not be a prime). - N. J. A. Sloane, Mar 18 2021
LINKS
Eric Weisstein's World of Mathematics, Cousin Primes
FORMULA
a(n) = A023200(n) + 4 = A087679(n) + 2.
a(n) = 3*A157834(n-1) + 2 = A029710(n-1) + 4 = 6*A056956(n-1) + 5 (thus a(n) mod 6 == 5), for all n>1. - M. F. Hasler, Jan 15 2013
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p4=p+4], (*Print[p4]; *)AppendTo[lst, p4]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
Select[Prime[Range[300]], PrimeQ[#+4]&]+4 (* Harvey P. Dale, Dec 15 2017 *)
PROG
(PARI) forprime(p=2, 1e5, if(isprime(p-4), print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a046132 n = a046132_list !! (n-1)
a046132_list = filter ((== 1) . a010051') $ map (+ 4) a000040_list
-- Reinhard Zumkeller, Aug 01 2014
CROSSREFS
Essentially the same as A031505. Cf. A023200, A029710, A098429.
Sequence in context: A048203 A370009 A088176 * A162337 A056687 A088981
KEYWORD
nonn
STATUS
approved