Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:44:50
%S 1,2,13,29,194,433,2897,6466,43261,96557,646018,1441889,9647009,
%T 21531778,144059117,321534781,2151239746,4801489937,32124537073,
%U 71700814274,479716816349,1070710724173,7163627708162,15988960048321
%N Markov numbers satisfying region 5 (x=5) of the equation x^2 + y^2 + z^2 = 3xyz.
%C Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 25 = 0. - _Colin Barker_, Feb 11 2014
%H Vincenzo Librandi, <a href="/A030452/b030452.txt">Table of n, a(n) for n = 1..200</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MarkovNumber.html">Markov Number.</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,15,0,-1).
%F a(n) = 15*a(n-2)-a(n-4).
%F G.f.: -x*(x-1)*(x^2+3*x+1) / (x^4-15*x^2+1). - _Colin Barker_, Feb 11 2014
%t CoefficientList[Series[(1 - x) (x^2 + 3 x + 1)/(x^4 - 15 x^2 + 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 12 2014 *)
%o (PARI) Vec(-x*(x-1)*(x^2+3*x+1)/(x^4-15*x^2+1) + O(x^100)) \\ _Colin Barker_, Feb 11 2014
%o (Magma) I:=[1,2,13,29]; [n le 4 select I[n] else 15*Self(n-2)-Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Feb 12 2014
%K nonn,easy
%O 1,2
%A Mark Milhet (mm992395(AT)shellus.com)
%E More terms from _James A. Sellers_, May 01 2000
%E Offset changed to 1 by _Colin Barker_, Feb 11 2014