Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiply successively by 1,1,2,2,3,3,4,4,..., n >= 1, a(0) = 1.
33

%I #171 Aug 25 2024 11:23:57

%S 1,1,1,2,4,12,36,144,576,2880,14400,86400,518400,3628800,25401600,

%T 203212800,1625702400,14631321600,131681894400,1316818944000,

%U 13168189440000,144850083840000,1593350922240000,19120211066880000,229442532802560000,2982752926433280000

%N Multiply successively by 1,1,2,2,3,3,4,4,..., n >= 1, a(0) = 1.

%C From _Emeric Deutsch_, Dec 14 2008: (Start)

%C Number of permutations of {1,2,...,n-1} having a single run of odd entries. Example: a(5)=12 because we have 1324,1342,3124,3142,2134,4132,2314,4312, 2413, 4213, 2431 and 4231.

%C a(n) = A152666(n-1,1). (End)

%C a(n+1) gives the permanent of the n X n matrix whose (i,j)-element is i+j-1 modulo 2. - _John W. Layman_, Jan 03 2011

%C From _Daniel Forgues_, May 20 2011: (Start)

%C a(0) = 1 since it is the empty product.

%C A010551(n-2), n >= 2, equal to (ceiling((n-2)/2))! * (floor((n-2)/2))!, gives the number of arrangements of n-2 entries from 2 to n-1, starting with an even entry and where the parity of adjacent entries alternates. This is the number of arrangements to investigate for row n of a prime pyramid (A051237). (End)

%C Partial products of A008619. - _Reinhard Zumkeller_, Apr 02 2012

%C Also size of the equivalence class of S_n containing the identity permutation under transformations of positionally adjacent elements of the form abc <--> acb where a < b < c, cf. A210667 (equivalently under such transformations of the form abc <--> bac where a < b < c.) - _Tom Roby_, May 15 2012

%C Row sums of A246117. - _Peter Bala_, Aug 15 2014

%C a(n) is the number of parity-alternating permutations of size n. A permutation is parity-alternating if it sends even integers to even, and odd to odd. - _Per W. Alexandersson_, Jun 06 2022

%C n divides a(n) if and only if n is not prime. Since a(n) = floor(n/2)!*floor((n+1)/2)!, if n is prime then n is not a factor of a(n). All the prime factors of a(n) are in fact less than or equal to (n+1)/2. If n is composite, then it's possible to write it as p*q with p and q less than or equal to n/2. So p and q are factors of a(n). - _Davide Oliveri_, Apr 01 2023

%C Number of permutations of {1, 2, ..., n-1} where each entry is not greater than twice the previous entry. - _Dewangga Putra Sheradhien_, Jul 13 2024

%H Reinhard Zumkeller, <a href="/A010551/b010551.txt">Table of n, a(n) for n = 0..500</a>

%H Edinah K. Gnang and Isaac Wass, <a href="http://arxiv.org/abs/1808.05551">Growing Graceful and Harmonious Trees</a>, arXiv:1808.05551 [math.CO], 2018-2020. See proposition 1.

%H Frether Getachew Kebede and Fanja Rakotondrajao, <a href="https://arxiv.org/abs/2101.09125">Parity alternating permutations starting with an odd integer</a>, arXiv:2101.09125 [math.CO], 2021.

%H Steven Linton, James Propp, Tom Roby, and Julian West, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Roby/roby4.html">Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.

%F a(n) = floor(n/2)!*floor((n+1)/2)! is the number of permutations p of {1, 2, 3, ..., n} such that for every i, i and p(i) have the same parity, i.e., p(i) - i is even. - Avi Peretz (njk(AT)netvision.net.il), Feb 22 2001

%F a(n) = n!/binomial(n, floor(n/2)). - _Paul Barry_, Sep 12 2004

%F G.f.: Sum_{n>=0} x^n/a(n) = besseli(0, 2*x) + x*besseli(1, 2*x). - _Paul D. Hanna_, Apr 07 2005

%F E.g.f.: 1/(1-x/2) + (1/2)/(1-x/2)*arccos(1-x^2/2)/sqrt(1-x^2/4). - _Paul D. Hanna_, Aug 28 2005

%F G.f.: G(0) where G(k) = 1 + (k+1)*x/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1) )); (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Nov 28 2012

%F D-finite with recurrence: 4*a(n) - 2*a(n-1) - n*(n-1)*a(n-2) = 0. - _R. J. Mathar_, Dec 03 2012

%F a(n) = a(n-1) * (a(n-2) + a(n-3)) / a(n-3) for all n >= 3. - _Michael Somos_, Dec 29 2012

%F G.f.: 1 + x + x^2*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 - (k+2)/(1-x/(x - 1/(1 - (k+2)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - _Sergei N. Gladkovskii_, Jan 15 2013

%F G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-x/(x - 1/(1 - (k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - _Sergei N. Gladkovskii_, Jan 15 2013

%F G.f.: 1 + x*G(0), where G(k) = 1 + x*(k+1)/(1 - x*(k+2)/(x*(k+2) + 1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 08 2013

%F G.f.: Q(0), where Q(k) = 1 + x*(k+1)/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 08 2013

%F Sum_{n >= 1} 1/a(n) = A130820. - _Peter Bala_, Jul 02 2016

%F a(n) ~ sqrt(Pi*n) * n! / 2^(n + 1/2). - _Vaclav Kotesovec_, Oct 02 2018

%F Sum_{n>=0} (-1)^n/a(n) = A229020. - _Amiram Eldar_, Apr 12 2021

%e G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 144*x^7 + 576*x^8 + ...

%e For n = 7, a(n) = 1*1*2*2*3*3*4 (7 factors), which is 144. - _Michael B. Porter_, Jul 03 2016

%p A010551 := proc(n)

%p option remember;

%p if n <= 1 then

%p 1

%p else

%p procname(n-1) *trunc( (n+1)/2 );

%p fi;

%p end:

%t FoldList[ Times, 1, Flatten@ Array[ {#, #} &, 11]] (* _Robert G. Wilson v_, Jul 14 2010 *)

%o (PARI) {a(n)=local(X=x+x*O(x^n)); 1/polcoeff(besseli(0,2*X)+X*besseli(1,2*X),n,x)} \\ _Paul D. Hanna_, Apr 07 2005

%o (PARI) A010551(n)=(n\2)!*((n+1)\2)! \\ _Michael Somos_, Dec 29 2012, edited by _M. F. Hasler_, Nov 26 2017

%o (Haskell)

%o a010551 n = a010551_list !! n

%o a010551_list = scanl (*) 1 a008619_list

%o -- _Reinhard Zumkeller_, Apr 02 2012

%o (Magma) [Factorial(n div 2)*Factorial((n+1) div 2): n in [0..25]]; // _Vincenzo Librandi_ Jan 17 2018

%o (Python)

%o def O(f):

%o c = 1

%o while len(f) > 1:

%o f.sort()

%o m = abs(f[0] - f[1])

%o c *= m

%o f[0] = m

%o f.pop(1)

%o return c

%o a = lambda n: O(list(range(1, n+1)))

%o print([a(n) for n in range(0, 26)]) # _Darío Clavijo_, Aug 24 2024

%Y Cf. A008619, A064044, A246117, A130820, A229020.

%Y Column k=2 of A275062.

%K nonn,easy

%O 0,4

%A _Mark R. Diamond_