OFFSET
1,4
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
N. J. A. Sloane, Transforms
FORMULA
Moebius transform of A000217(n-2).
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = (1 - 3*x + 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 26 2017
EXAMPLE
From Gus Wiseman, Oct 14 2020: (Start)
The a(3) = 1 through a(8) = 18 triples:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6)
(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5)
(2,1,1) (1,3,1) (1,3,2) (1,3,3) (1,3,4)
(2,1,2) (1,4,1) (1,4,2) (1,4,3)
(2,2,1) (2,1,3) (1,5,1) (1,5,2)
(3,1,1) (2,3,1) (2,1,4) (1,6,1)
(3,1,2) (2,2,3) (2,1,5)
(3,2,1) (2,3,2) (2,3,3)
(4,1,1) (2,4,1) (2,5,1)
(3,1,3) (3,1,4)
(3,2,2) (3,2,3)
(3,3,1) (3,3,2)
(4,1,2) (3,4,1)
(4,2,1) (4,1,3)
(5,1,1) (4,3,1)
(5,1,2)
(5,2,1)
(6,1,1)
(End)
MAPLE
with(numtheory):
mobtr:= proc(p)
proc(n) option remember;
add(mobius(n/d)*p(d), d=divisors(n))
end
end:
A000217:= n-> n*(n+1)/2:
a:= mobtr(n-> A000217(n-2)):
seq(a(n), n=1..58); # Alois P. Heinz, Feb 08 2011
MATHEMATICA
mobtr[p_] := Module[{f}, f[n_] := f[n] = Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; f]; A000217[n_] := n*(n+1)/2; a = mobtr[A000217[#-2]&]; Table[a[n], {n, 1, 58}] (* Jean-François Alcover, Mar 12 2014, after Alois P. Heinz *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {3}], GCD@@#==1&]], {n, 0, 30}] (* Gus Wiseman, Oct 14 2020 *)
CROSSREFS
A000010 is the length-2 version.
A000217(n-2) does not require relative primality.
A000740 counts these compositions of any length.
A000742 is the length-4 version.
A000837 counts relatively prime partitions.
A023023 is the unordered version.
A101271 is the strict case.
A101391 has this as column k = 3.
A284825*6 is the pairwise non-coprime case.
A337461 is the pairwise coprime instead of relatively prime version.
A337603 counts length-3 compositions whose distinct parts are pairwise coprime.
A337604 is the pairwise non-coprime instead of relatively prime version.
KEYWORD
nonn,easy,changed
AUTHOR
EXTENSIONS
Edited by Alois P. Heinz, Feb 08 2011
STATUS
approved