Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004007
Theta series of E_6 lattice.
(Formerly M5349)
4
1, 72, 270, 720, 936, 2160, 2214, 3600, 4590, 6552, 5184, 10800, 9360, 12240, 13500, 17712, 14760, 25920, 19710, 26064, 28080, 36000, 25920, 47520, 37638, 43272, 45900, 59040, 46800, 75600, 51840, 69264, 73710, 88560, 62208, 108000, 85176
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
Expansion of eta(q)^9 / eta(q^3)^3 + 81*q * eta(q^3)^9 / eta(q)^3 in powers of q.
Expansion of a(q)^3 + 2*c(q)^3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Oct 24 2006
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q]^9 / QPochhammer[ q^3]^3 + 81 q QPochhammer[ q^3]^9 / QPochhammer[ q]^3, {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
terms = 37; f[q_] = LatticeData["E6", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}] // Normal // Simplify[#, q > 0]&; (List @@ s)[[1 ;; terms]] /. q -> 1 (* Jean-François Alcover, Jul 04 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3 + 81 * x * eta(x^3 + A)^9 / eta(x + A)^3, n))}; /* Michael Somos, Oct 24 2006 */
CROSSREFS
Cf. A005129 (dual lattice).
Sequence in context: A165139 A305222 A316800 * A279272 A378002 A173546
KEYWORD
nonn
STATUS
approved