Bruker:Ramskjell/Kladd/Vindturbin
Vindkraft |
Vannkraft |
Solkraft |
Geotermisk energi |
Bioenergi |
Havenergi |
En vindturbin er en innretning som omformer vindens kinetiske energi til elektrisk energi.
Vindturbiner finnes i flere forskjellige varianter, både med vertikale og horisontale akser. De minste turbinene blir brukt til f.eks. batterilading for båter eller campingvogner og biler eller til å forsyne trafikkskilt. Noe større turbiner kan brukes som bidrag til strømforsyning for husholdninger, med eventuell mulighet for å selge overskuddskraft tilbake til nettet. Større turbiner, gjerne i grupper, kjent som vindparker, er i ferd med å bli en viktig bidragsyter til nasjonal strømforsyning i mange land, og et viktig bidrag i overgangen til fornybar energiforsyning ved at de erstatter kraftverk som baserer seg på fossile brensler. Vind har i følge en studie «lavest relative utslipp av drivhusgasser, lavest ferskvannsforbruk (...) og best sosial profil» sammenlignet med sol-, vann-, geotermisk, kull- og gasskraft.[1]
Historie
[rediger | rediger kilde]Vindkraft var antagelig i bruk i Persia (dagens Iran) omkring 500-900 CE.[2] Vindhjulet til Heron av Alexandria er en av de første dokumenterte tilfellene av en vind-drevet maskin.[3][4] Den første praktiske benyttelsen av vindkraft var i Sistan, en østlig provins av Iran, fra det syvende århundre. De såkalte Panemone-møllene var vertikalakslete vindmøller med lange drivakslinger utstyrt med rektangulære blader.[5] Seks til tolv seil dekket med siv eller stoff fikk maskinene til å dreie rundt, kraften ble brukt å male mel, pumpe vann og knuse sukkerrør.[6]
Vindkraft dukket opp i Europa i middelalderen. De første historiske beskrivelsene av bruken i England er fra det 11. og 12. århundre, og det finnes rapporter om tyske korsfarere som bringer sin kunnskap om vindkraft til Syria omkring 1190.[7] I det 14.århundre var nederlandske vindmøller brukt til å drenere Rhine-deltaet. Avanserte vindturbiner ble beskrevet av den kroatiske oppfinneren Fausto Veranzio. I sin bok Machinae Novae fra 1595 beskriver han vindturbiner med vertikal aksling og buede eller V-formede blader.
Den første vindturbinen som genererte elektrisitet ble installert i juli 1887 av den skotske akademikeren James Blyth, og ble brukt til å lade batterier som forsynte hans feriebolig i Marykirk, Skotlland.[8] Noen måneder senere bygde den amerikanske oppfinneren Charles F. Brush den første automatisk opererte vindturbinen i Cleveland, Ohio, med hjelp fra universitetsprofessorene Jacob S. Gibbs og Brinsley Coleberd[8] . Selv om Blyths turbin var regnet som ulønnsom i Storbritannia[8], var vindkraft mer kostnadseffektivt enn alternativene i land hvor befolkningen var mer spredt[7].
Rundt år 1900 var det omtrent 2500 vindmøller i Danmark, primært for mekaniske laster som pumper og kornmøller, til sammen hadde de maksimal effekt estimert til 30 MW. De største maskinene var montert på 24m høye tårn, med fire-bladede rotorer på 23m i diameter. I 1908 var det 72 vind-drevne elektriske generatorer i USA, med effekt fra 5 til 25 kW. Ved utbruddet av første verdenskrig produserte amerikanske vindmølleprodusenter 100000 vindmøller i året, de fleste til vannpumping.[10]
På 1930-tallet var vindturbiner for elektrisitet vanlig på gårder, særlig i USA hvor distribusjonsnettet var dårlig utbygd. I denne perioden var stål relativt rimelig, turbinene ble derfor montert på toppen av prefabrikkerte stålgitter-tårn.
En tidlig versjon av moderne horisontalakslede vindturbiner var i bruk i Yalta, Sovjetunionen i 1931. Dette var en 100 kW generator på et 30 m høyt tårn, tilkoblet til det lokale distribusjonsnettet med spenning på 6,3 kV. Det hadde en årlig kapasitetsfaktor på 32 %, ikke langt fra moderne vindturbiner.[11]
Høsten 1941 ble den første vindturbinen i megawatt-klassen koblet til nettet i Vermont, USA. Smith-Putnam-turbinen var kun i drift i 1100 timer før den fikk en kritisk feil. Turbinen ble aldri reparert, på grunn av materiell-mangel under krigen.
Den første nett-tilknyttede turbinen i Storbritannia var bygd av John Brown & Company i 1951 på Orkney Islands.[8][12]
Til tross for utviklingen, fremskritt innenfor fossile brenselsystemer eliminerte i stor grad vindturbiner, bortsett fra de aller minste. Tidlig på 70-tallet førte anti-atomprotester i Danmark til at uavhengige mekanikere utviklet vindturbiner på 22 kW. Eiere organiserte seg i kollektiver og bedrev lobbyvirksomhet overfor myndigheter og netteiere, noe som førte til insentiver for større turbiner på 80-tallet. Lokale aktivister i Tyskland, nye turbinprodusenter i Spania og større investorer i USA bedrev samtidig lobbyvirksomhet som stimulerte industrien i disse landene. Senere kom selskaper i India og Kina til. Vestas er verdens største vindturbinprodusent, med Siemens-Gamesa Renewable Energy rett bak.
Ressurser
[rediger | rediger kilde]En kvantitativ måling av den tilgjengelige vindenergien på et gitt sted kalles vindkraft-tettheten (WPD - Wind Power Density). Det er en kalkulasjon av den gjennomsnittlige kraften tilgjengelig pr kvadratmeter område en vindturbins blader kan dekke, og er inndelt etter forskjellige høyder over bakken. Utregning av vindkraft-tettheten inkluderer effekten av både vindens hastighet og luftens tetthet. Fargekodede kart for områder blir utarbeidet. I USA blir resultatene av disse utregningene inkludert i en indeks som angir forskjellige klasser for områder, kalt NREL CLASS. Jo høyere tetthet et område har, jo høyere klasse. Klassene spenner fra klasse 1 (200W pr kvadratmeter eller midre ved 50m høyde) til klasse 7 (800-2000W pr kvadratmeter). Kommersielle vindparker er generelt i klasse 3 eller høyere.[13]
Vindturbiner er klassifiert etter vindhastigheten de er designet for, fra klasse I til klasse IV, med A eller B for turbulens-grad.[14]
Klasse | Gj.sn. vindhastighet (m/s) | Turbulens |
---|---|---|
IA | 10 | 18% |
IB | 10 | 16% |
IIA | 8.5 | 18% |
IIB | 8.5 | 16% |
IIIA | 7.5 | 18% |
IIIB | 7.5 | 16% |
IVA | 6 | 18% |
IVB | 6 | 16% |
Effektivitet
[rediger | rediger kilde]Bevarelse av masse tilsier at mengden av vind som kommer inn og forlater en vindturbin må være lik. Følgelig, Betz' lov gir den maksimale oppnåelige mengden effekt man kan få ut av en vindturbin som 16/27 (59,3 %) av den totale kinetiske energien til luften gjennom turbinen.[15]
Hvis arealet av sirkelen bladene danner er A, vindhastigheten er v, vil den teoretiske maksimale effekten P bli:
- ,
hvor ρ er luft-tettheten.
As wind is free (no fuel cost), wind-to-rotor efficiency (including rotor blade friction and drag) is one of many aspects impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18]Mal:Update inline
Efficiency can decrease slightly over time due to wear. Analysis of 3128 wind turbines older than 10 years in Denmark showed that half of the turbines had no decrease, while the other half saw a production decrease of 1.2% per year.[19] Vertical turbine designs have much lower efficiency than standard horizontal designs.[20]
Typer
[rediger | rediger kilde]Bladene på en vindturbin kan rotere rundt enten en horisontal eller vertikal akse, det første er vanligst.[21] Normalt sett har de en form for blader, men det finnes også bladløse design.[22][23] Vertikalakslete varianter produserer mindre energi, og relativt uvanlig.[24]
Horisontal akse
[rediger | rediger kilde]Horisontalakslede vindturbiner har rotorakslingen og generatoren på toppen av tårnet, i nacellen, som må dreies mot vinden. Mindre turbiner bruker en enkel vindfane, mens større turbiner vanligvis har en vindsensor og en servomotor som dreier nacellen. De fleste har en gearkasse, som forvandler den trege rotasjonen til bladene til en større hastighet som er bedre tilpasset generatoren.[25]
Any solid object produces a wake behind it, leading to fatigue failures, so the turbine is usually positioned upwind of its supporting tower. Downwind machines have been built, because they don't need an additional mechanism for keeping them in line with the wind. In high winds, the blades can also be allowed to bend which reduces their swept area and thus their wind resistance. In upwind designs, turbine blades must be made stiff to prevent the blades from being pushed into the tower by high winds. Additionally, the blades are placed a considerable distance in front of the tower and are sometimes tilted forward into the wind a small amount.
Turbines used in wind farms for commercial production of electric power are usually three-bladed. These have low torque ripple, which contributes to good reliability. The blades are usually colored white for daytime visibility by aircraft and range in length from 20 til 80 meter (66 til 262 ft). The size and height of turbines increase year by year. Offshore wind turbines are built up to 8MW today and have a blade length up to 80 meter (260 ft). Usual tubular steel towers of multi megawatt turbines have a height of 70 m to 120 m and in extremes up to 160 m.
Rotational speed
[rediger | rediger kilde]The blades rotate at 10 to 22 revolutions per minute. At 22 rotations per minute the tip speed exceeds 90 meter per sekund (300 ft/s).[26][27] Higher tip speeds means more noise and blade erosion. A gear box is commonly used for stepping up the speed of the generator, although designs may also use direct drive of an annular generator. Some models operate at constant speed, but more energy can be collected by variable-speed turbines which use a solid-state power converter to interface to the transmission system. All turbines are equipped with protective features to avoid damage at high wind speeds, by feathering the blades into the wind which ceases their rotation, supplemented by brakes.
Vertikal akse
[rediger | rediger kilde]Vertical-axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically. One advantage of this arrangement is that the turbine does not need to be pointed into the wind to be effective, which is an advantage on a site where the wind direction is highly variable. It is also an advantage when the turbine is integrated into a building because it is inherently less steerable. Also, the generator and gearbox can be placed near the ground, using a direct drive from the rotor assembly to the ground-based gearbox, improving accessibility for maintenance. However, these designs produce much less energy averaged over time, which is a major drawback.[24][28]
The key disadvantages include the relatively low rotational speed with the consequential higher torque and hence higher cost of the drive train, the inherently lower power coefficient, the 360-degree rotation of the aerofoil within the wind flow during each cycle and hence the highly dynamic loading on the blade, the pulsating torque generated by some rotor designs on the drive train, and the difficulty of modelling the wind flow accurately and hence the challenges of analysing and designing the rotor prior to fabricating a prototype.[29]
When a turbine is mounted on a rooftop the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of a rooftop mounted turbine tower is approximately 50% of the building height it is near the optimum for maximum wind energy and minimum wind turbulence. Wind speeds within the built environment are generally much lower than at exposed rural sites,[30][31] noise may be a concern and an existing structure may not adequately resist the additional stress.
Subtypes of the vertical axis design include:
"Eggbeater" turbines, or Darrieus turbines, were named after the French inventor, Georges Darrieus.[32] They have good efficiency, but produce large torque ripple and cyclical stress on the tower, which contributes to poor reliability. They also generally require some external power source, or an additional Savonius rotor to start turning, because the starting torque is very low. The torque ripple is reduced by using three or more blades which results in greater solidity of the rotor. Solidity is measured by blade area divided by the rotor area. Newer Darrieus type turbines are not held up by guy-wires but have an external superstructure connected to the top bearing.[33]
A subtype of Darrieus turbine with straight, as opposed to curved, blades. The cycloturbine variety has variable pitch to reduce the torque pulsation and is self-starting.[34] The advantages of variable pitch are: high starting torque; a wide, relatively flat torque curve; a higher coefficient of performance; more efficient operation in turbulent winds; and a lower blade speed ratio which lowers blade bending stresses. Straight, V, or curved blades may be used.[35]
These are drag-type devices with two (or more) scoops that are used in anemometers, Flettner vents (commonly seen on bus and van roofs), and in some high-reliability low-efficiency power turbines. They are always self-starting if there are at least three scoops.
Twisted Savonius
[rediger | rediger kilde]Twisted Savonius is a modified savonius, with long helical scoops to provide smooth torque. This is often used as a rooftop windturbine and has even been adapted for ships.[36]
Parallel
[rediger | rediger kilde]The parallel turbine is similar to the crossflow fan or centrifugal fan. It uses the ground effect. Vertical axis turbines of this type have been tried for many years: a unit producing 10 kW was built by Israeli wind pioneer Bruce Brill in the 1980s.[37]Mal:Unreliable source?
Design og konstruksjon
[rediger | rediger kilde]Wind turbines are designed, using a range of computer modelling techniques,[38] to exploit the wind energy that exists at a location. For example, Aerodynamic modeling is used to determine the optimum tower height, control systems, number of blades and blade shape.
Components
[rediger | rediger kilde]Wind turbines convert wind energy to electrical energy for distribution. Conventional horizontal axis turbines can be divided into three components:
Rotor
[rediger | rediger kilde]The rotor component, which is approximately 20% of the wind turbine cost, includes the blades for converting wind energy to low speed rotational energy.
Generator
[rediger | rediger kilde]The generator component, which is approximately 34% of the wind turbine cost, includes the electrical generator,[39][40] the control electronics, and most likely a gearbox (e.g. planetary gearbox),[41] adjustable-speed drive or continuously variable transmission[42] component for converting the low speed incoming rotation to high speed rotation suitable for generating electricity.
Structural support
[rediger | rediger kilde]The structural support component, which is approximately 15% of the wind turbine cost, includes the tower and rotor yaw mechanism.[43]
Weight
[rediger | rediger kilde]A 1.5 MW wind turbine of a type frequently seen in the United States has a tower 80 meter (260 ft) high. The rotor assembly (blades and hub) weighs 22 000 kilogram (48 000 lb). The nacelle, which contains the generator component, weighs 52 000 kilogram (115 000 lb). The concrete base for the tower is constructed using 26 000 kilogram (58 000 lb) of reinforcing steel and contains 190 cubic meter (250 cu yd) of concrete. The base is 15 meter (50 ft) in diameter and 2,4 meter (8 ft) thick near the center.[44]
Effectivity
[rediger | rediger kilde]Among all renewable energy systems, wind turbines have the highest effective intensity of power-harvesting surface,[45] because turbine blades not only harvest wind power, but also concentrate it.[46][omstridt ]
Unconventional designs
[rediger | rediger kilde]An E-66 wind turbine in the Windpark Holtriem, Germany, has an observation deck for visitors. Another turbine of the same type with an observation deck is located in Swaffham, England. Airborne wind turbine designs have been proposed and developed for many years but have yet to produce significant amounts of energy. In principle, wind turbines may also be used in conjunction with a large vertical solar updraft tower to extract the energy due to air heated by the sun.
Wind turbines which utilise the Magnus effect have been developed.[47]
A ram air turbine (RAT) is a special kind of small turbine that is fitted to some aircraft. When deployed, the RAT is spun by the airstream going past the aircraft and can provide power for the most essential systems if there is a loss of all on-board electrical power,[48] as in the case of the "Gimli Glider".
The two-bladed SCD 6MW offshore turbine designed by aerodyn Energiesysteme and built by MingYang Wind Power has a helideck for helicopters on top of its nacelle. The prototype was erected in 2014 in Rudong, China.
Turbine monitoring and diagnostics
[rediger | rediger kilde]Due to data transmission problems, structural health monitoring of wind turbines is usually performed using several accelerometers and strain gages attached to the nacelle to monitor the gearbox and equipments. Currently, digital image correlation and stereophotogrammetry are used to measure dynamics of wind turbine blades. These methods usually measure displacement and strain to identify location of defects. Dynamic characteristics of non-rotating wind turbines have been measured using digital image correlation and photogrammetry.[49] Three dimensional point tracking has also been used to measure rotating dynamics of wind turbines.[50]
Materialer og varighet
[rediger | rediger kilde]Materials that are typically used for the rotor blades in wind turbines are composites, as they tend to have a high stiffness, high strength, high fatigue resistance, and low weight.[51] Typical resins used for these composites include polyester and epoxy, while glass and carbon fibers have been used for the reinforcing material.[52] Construction may use manual layup techniques or composite resin injection molding. As the price of glass fibers is only about one tenth the price of carbon fiber, glass fiber is still dominant.
As competition in the wind market increases, companies are seeking ways to draw greater efficiency from their designs. One of the predominant ways wind turbines have gained performance is by increasing rotor diameters, and thus blade length. Retrofitting current turbines with larger blades mitigates the need and risks associated with a system-level redesign. By incorporating carbon fiber into parts of existing blade systems, manufacturers may increase the length of the blades without increasing their overall weight. For instance, the spar cap, a structural element of a turbine blade, commonly experiences high tensile loading, making it an ideal candidate to utilize the enhanced tensile properties of carbon fiber in comparison to glass fiber.[53] Higher stiffness and lower density translates to thinner, lighter blades offering equivalent performance. In a 10-MW turbine—which will become more common in offshore systems by 2021—blade lengths may reach over 100 m and weigh up to 50 metric tons when fabricated out of glass fiber. A switch to carbon fiber in the structural spar of the blade yields weight savings of 20 to 30 percent, or approximately 15 metric tons.[54] The compressive properties of carbon fiber do not differ significantly from those of glass fiber. It is therefore economical to replace glass fiber components under compression with carbon fiber components.
While the material cost is significantly higher for all-glass fiber blades than for hybrid glass/carbon fiber blades, there is a potential for tremendous savings in manufacturing costs when labor price is considered. Utilizing carbon fiber enables for simpler designs that use less raw material. The chief manufacturing process in blade fabrication is the layering of plies. By reducing the number of layers of plies, as is enabled by thinner blade design, the cost of labor may be decreased, and in some cases, equate to the cost of labor for glass fiber blades.[55]
Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines uses a couple of tonnes of copper for generators, cables and such.[56] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines more lightweight and efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still, requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.,[51] In particular, this would require an increased supply of the rare earth metal neodymium. Reliance on rare earth minerals for components has risked expense and price volatility as China has been main producer of rare earth minerals (96% in 2009) and had been reducing its export quotas of these materials.[57] In recent years, however, other producers have increased production of rare earth minerals and China has removed its reduced export quota on rare earths leading to an increased supply and decreased cost of rare earth minerals, increasing the viability of the implementation of variable speed generators in wind turbines on a large scale.[58]
Wind turbines on public display
[rediger | rediger kilde]A few localities have exploited the attention-getting nature of wind turbines by placing them on public display, either with visitor centers around their bases, or with viewing areas farther away.[59] The wind turbines are generally of conventional horizontal-axis, three-bladed design, and generate power to feed electrical grids, but they also serve the unconventional roles of technology demonstration, public relations, and education.
Små vindturbiner
[rediger | rediger kilde]Small wind turbines may be used for a variety of applications including on- or off-grid residences, telecom towers, offshore platforms, rural schools and clinics, remote monitoring and other purposes that require energy where there is no electric grid, or where the grid is unstable. Small wind turbines may be as small as a fifty-watt generator for boat or caravan use. Hybrid solar and wind powered units are increasingly being used for traffic signage, particularly in rural locations, as they avoid the need to lay long cables from the nearest mains connection point.[60] The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) defines small wind turbines as those smaller than or equal to 100 kilowatts.[61] Small units often have direct drive generators, direct current output, aeroelastic blades, lifetime bearings and use a vane to point into the wind.
Larger, more costly turbines generally have geared power trains, alternating current output, flaps and are actively pointed into the wind. Direct drive generators and aeroelastic blades for large wind turbines are being researched.
Wind turbine spacing
[rediger | rediger kilde]On most horizontal windturbine farms, a spacing of about 6–10 times the rotor diameter is often upheld. However, for large wind farms distances of about 15 rotor diameters should be more economically optimal, taking into account typical wind turbine and land costs. This conclusion has been reached by research[62] conducted by Charles Meneveau of the Johns Hopkins University,[63] and Johan Meyers of Leuven University in Belgium, based on computer simulations[64] that take into account the detailed interactions among wind turbines (wakes) as well as with the entire turbulent atmospheric boundary layer.
Recent research by John Dabiri of Caltech suggests that vertical wind turbines may be placed much more closely together so long as an alternating pattern of rotation is created allowing blades of neighbouring turbines to move in the same direction as they approach one another.[65]
Operasjon
[rediger | rediger kilde]Vedlikehold
[rediger | rediger kilde]Vindturbiner trenger jevnlig vedlikehold for å forbli pålitelige og tilgjengelige, en oppetid på rundt 98 % er mulig.[66][67]
Moderne turbiner har gjerne en liten kran oppe i nacellen for å heise opp vedlikeholdsutstyr og reservedeler. Større deler, som generator, blader eller girkasse trenger sjelden å erstattes, i slike tilfeller må en stor mobilkran benyttes.[68]
Repowering
[rediger | rediger kilde]Utdypende artikkel: Repowering
Installation of new wind turbines can be controversial. An alternative is repowering, where existing wind turbines are replaced with bigger, more powerful ones, sometimes in smaller numbers while keeping or increasing capacity.
Riving
[rediger | rediger kilde]Tidligere var det i en del tilfeller ikke krav til å rive en vindturbin som er tatt ut av drift. Noen står ennå i påvente av riving eller ombygging og modernisering.[69][70]
A demolition industry develops to recycle offshore turbines at a cost of DKK 2–4 million per MW, to be guaranteed by the owner.[71]
Sammenligning med fossile brensler
[rediger | rediger kilde]Fordeler
[rediger | rediger kilde]Vindturbiner er generelt ikke veldig kostbare. Prisen pr kWh kan typisk ligge på rundt 40 øre[72], som er nokså lavt sammenlignet med andre former for elektrisitetsproduksjon, særlig kull- atom- og gasskraft. Vannkraft er vanligvis rimeligere.[73] Det er forventet at prisen kommer til å synke ytterligere ettersom teknologien modner og forbedres.[73] Hoveddelen av kostnaden for vindparker i dag er innkjøp og installasjon av vindturbiner, som ligger på rundt NOK 10.000.000 pr MW installert.[74][75]
Vindturbiner er en ren energikilde med null utslipp av klimagasser under drift, og ingen avfallsproduksjon. Over 1500 tonn karbondioksid kan bli eliminert fra atmosfæren pr MW vindturbin som erstatter fossil kraft.[76]
Ulemper
[rediger | rediger kilde]Wind turbines can be very large, reaching over 140 meter (460 ft) tall and with blades 55 meter (60 yd) long,[77] and people have often complained about their visual impact.
Environmental impact of wind power includes effect on wildlife. Thousands of birds, including rare species, have been killed by the blades of wind turbines,[78] though wind turbines contribute relatively insignificantly to anthropogenic avian mortality. For every bird killed by a wind turbine in the US, nearly 500,000 are killed by each of feral cats and buildings.[79]. In comparison, conventional coal fired generators contribute significantly more to bird mortality, by incineration when caught in updrafts of smoke stacks and by poisoning with emissions byproducts (including particulates and heavy metals downwind of flue gases). Further, marine life is affected by water intakes of steam turbine cooling towers (heat exchangers) for nuclear and fossil fuel generators, by coal dust deposits in marine ecosystems (e.g. damaging Australia's Great Barrier Reef) and by water acidification from combustion monoxides.
Energy harnessed by wind turbines is intermittent, and is not a "dispatchable" source of power; its availability is based on whether the wind is blowing, not whether electricity is needed. Turbines can be placed on ridges or bluffs to maximize the access of wind they have, but this also limits the locations where they can be placed.[73] In this way, wind energy is not a particularly reliable source of energy. However, it can form part of the energy mix, which also includes power from other sources. Notably, the relative available output from wind and solar sources is often inversely proportional (balancing). Technology is also being developed to store excess energy, which can then make up for any deficits in supplies.
Rekorder
[rediger | rediger kilde]- Largest capacity conventional drive
- The Vestas V164 has a rated capacity of 8 MW,[80] later upgraded to 9 MW.[81] The wind turbine has an overall height of 220 m (722 ft), a diameter of 164 m (538 ft), is for offshore use, and is the world's largest-capacity wind turbine since its introduction in 2014. The conventional drive train consist of a main gearbox and a medium speed PM generator. Prototype installed in 2014 at the National Test Center Denmark nearby Østerild. Series production began end of 2015.
- Largest capacity direct drive
- The Enercon E-126 with 7.58 MW and 127 m rotor diameter is the largest direct drive turbine. It's only for onshore use. The turbine has parted rotor blades with 2 sections for transport. In July 2016, Siemens upgraded its 7 to 8 MW.[82]
- Largest vertical-axis
- Le Nordais wind farm in Cap-Chat, Quebec has a vertical axis wind turbine (VAWT) named Éole, which is the world's largest at 110 m.[83] It has a nameplate capacity of 3.8 MW.[84]
- Largest 1-bladed turbine
- Riva Calzoni M33 was a single-bladed wind turbine with 350 kW, designed and built In Bologna in 1993.[85]
- Largest 2-bladed turbine
- The biggest 2-bladed turbine is built by Mingyang Wind Power in 2013. It is a SCD6.5MW offshore downwind turbine, designed by aerodyn Energiesysteme.[86][87][88]
- Largest swept area
- The turbine with the largest swept area is the Samsung S7.0–171, with a diameter of 171 m, giving a total sweep of 22966 m2.
- Tallest
- A Nordex 3.3 MW was installed in July 2016. It has a total height of 230m, and a hub height of 164m on 100m concrete tower bottom with steel tubes on top (hybrid tower).[89]
- Vestas V164 was the tallest wind turbine, standing in Østerild, Denmark, 220 meters tall, constructed in 2014. It has a steel tube tower.
- Highest tower
- Fuhrländer installed a 2.5MW turbine on a 160m lattice tower in 2003 (see Fuhrländer Wind Turbine Laasow and Nowy Tomyśl Wind Turbines).
- Most rotors
- Lagerwey has build Four-in-One, a multi rotor wind turbine with one tower and four rotors near Maasvlakte.[trenger referanse] In April 2016, Vestas installed a 900 kW quadrotor test wind turbine at Risø, made from 4 recycled 225 kW V29 turbines.[90][91][92]
- Most productive
- Four turbines at Rønland Offshore Wind Farm in Denmark share the record for the most productive wind turbines, with each having generated 63.2 GWh by June 2010.[93]
- Highest-situated
- Since 2013 the world's highest-situated wind turbine was made and installed by WindAid and is located at the base of the Pastoruri Glacier in Peru at 4 877 meter (16 001 ft) above sea level.[94] The site uses the WindAid 2.5 kW wind generator to supply power to a small rural community of micro entrepreneurs who cater to the tourists who come to the Pastoruri glacier.[95]
- Largest floating wind turbine
- The world's largest—and also the first operational deep-water large-capacity—floating wind turbine is the 2.3 MW Hywind currently operating 10 kilometer (10 000 m) offshore in 220-meter-deep water, southwest of Karmøy, Norway. The turbine began operating in September 2009 and utilizes a Siemens 2.3 MW turbine.[96][97]
Se også
[rediger | rediger kilde]References
[rediger | rediger kilde]- ^ Evans, Annette; Strezov, Vladimir; Evans, Tim (June 2009). «Assessment of sustainability indicators for renewable energy technologies». Renewable and Sustainable Energy Reviews. 13 (5): 1082-1088 – via Elsevier Science Direct. Sjekk datoverdier i
|dato=
(hjelp) - ^ «Part 1 – Early History Through 1875». Besøkt 31 July 2008. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Drachmann, A.G. (1961). «Heron's Windmill». Centaurus. 7: 145–151.
- ^ Dietrich Lohrmann, "Von der östlichen zur westlichen Windmühle", Archiv für Kulturgeschichte, Vol. 77, Issue 1 (1995), pp. 1–30 (10f.)
- ^ Ahmad Y Hassan, Donald Routledge Hill (1986). Islamic Technology: An illustrated history, p. 54. Cambridge University Press. ISBN 0-521-42239-6.
- ^ Donald Routledge Hill, "Mechanical Engineering in the Medieval Near East", Scientific American, May 1991, p. 64-69. (cf. Donald Routledge Hill, Mechanical Engineering)
- ^ a b Wind energy in the 21st century: economics, policy, technology and the changing electricity industry. Houndmills, Basingstoke, Hampshire: Palgrave/UNEP. 2002. ISBN 0-333-79248-3.
- ^ a b c d Price, Trevor J. (2004). «Blyth, James (1839–1906)». Oxford Dictionary of National Biography (online utg.). Oxford University Press. doi:10.1093/ref:odnb/100957. (Abonnement eller «UK public library»-medlemskap påkrevd.)
- ^ A Wind Energy Pioneer: Charles F. Brush. Danish Wind Industry Association. Besøkt 28 December 2008. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Quirky old-style contraptions make water from wind on the mesas of West Texas Arkivert 3 februar 2008 hos Wayback Machine
- ^ Alan Wyatt: Electric Power: Challenges and Choices. Book Press Ltd., Toronto 1986, ISBN 0-920650-00-7
- ^ Anon. «Costa Head Experimental Wind Turbine». Orkney Sustainable Energy Website. Orkney Sustainable Energy Ltd. Besøkt 19 December 2010. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ «NREL: Dynamic Maps, GIS Data, and Analysis Tools – Wind Maps». Nrel.gov. 3 September 2013. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ IEC Wind Turbine Classes 7 June 2006
- ^ «The Physics of Wind Turbines Kira Grogg Carleton College, 2005, p.8» (PDF). Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ «Wind Energy Basics». Bureau of Land Management. Besøkt 23 April 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ "Enercon E-family, 330 Kw to 7.5 Mw, Wind Turbine Specification" Arkivert 16 mai 2011 hos Wayback Machine
- ^ Tony Burton et al., (ed), Wind Energy Handbook, John Wiley and Sons 2001 ISBN 0471489972 page 65
- ^ Sanne Wittrup. "11 years of wind data shows surprising production decrease" (in Danish) Ingeniøren, 1 November 2013. Retrieved 2 November 2013.
- ^ E. Hau., Wind Turbines: Fundamentals, Technologies, Application, Economics. Springer. Germany. 2006
- ^ «Wind Energy Basics». American Wind Energy Association. Arkivert fra originalen 23 September 2010. Besøkt 24 September 2009. Sjekk datoverdier i
|arkivdato=, |besøksdato=
(hjelp) - ^ Transparent plexiglass blades
- ^ No blades
- ^ a b http://www.wind-works.org/cms/index.php?id=64&tx_ttnews%5Btt_news%5D=3103&cHash=be80a2ca690fe1bcec1c0dc0af1e795b
- ^ [1] Arkivert 7 juni 2008 hos Wayback Machine
- ^ «Products & Services». Gepower.com. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ «Technical Specs of Common Wind Turbine Models». Aweo.org.
- ^ http://cleantechnica.com/2014/04/07/vertical-axis-wind-turbines-great-1890-also-rans-2014/
- ^ http://www.awsopenwind.org/downloads/documentation/ModelingUncertaintyPublic.pdf
- ^ Hugh Piggott (6 January 2007). «Windspeed in the city – reality versus the DTI database». Scoraigwind.com. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ http://www.urbanwind.net/pdf/technological_analysis.pdf
- ^ «Vertical-Axis Wind Turbines». Symscape. 7 July 2008. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Exploit Nature-Renewable Energy Technologies by Gurmit Singh, Aditya Books, pp 378
- ^ [2] Arkivert 3 april 2005 hos Wayback Machine
- ^ «Experimental Mechanics, Volume 18, Number 1 – SpringerLink» (PDF). Springerlink.com. 1 January 1978. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Rob Varnon. Derecktor converting boat into hybrid passenger ferry, Connecticut Post website, 2 December 2010. Retrieved 25 April 2012.
- ^ «Modular wind energy device – Brill, Bruce I». Freepatentsonline.com. 19 November 2002. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Hewitt, Sam; Margetts, Lee & Revell, Alistair (18 April 2017). «Building a digital wind farm». Archives of Computational Methods in Engineering. doi:10.1007/s11831-017-9222-7. Besøkt 20 April 2017. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Navid Goudarzi (June 2013). «A Review on the Development of the Wind Turbine Generators across the World». International Journal of Dynamics and Control. Springer. 1 (2): 192–202. doi:10.1007/s40435-013-0016-y. Sjekk datoverdier i
|dato=
(hjelp) - ^ Navid Goudarzi; Weidong Zhu (November 2012). «A Review of the Development of Wind Turbine Generators Across the World». ASME 2012 International Mechanical Engineering Congress and Exposition. ASME. 4 – Paper No: IMECE2012-88615: 1257–1265.
- ^ «Hansen W4 series». Hansentransmissions.com. Arkivert fra originalen 15 March 2012. Besøkt 6 November 2013. Sjekk datoverdier i
|arkivdato=, |besøksdato=
(hjelp) - ^ John Gardner, Nathaniel Haro & Todd Haynes (October 2011). «Active Drivetrain Control to Improve Energy Capture of Wind Turbines» (PDF). Boise State University. Besøkt 28 February 2012Mal:Inconsistent citations Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ «"Wind Turbine Design Cost and Scaling Model", Technical Report NREL/TP-500-40566, December, 2006, page 35, 36» (PDF). Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ [3] Arkivert 15 juli 2011 hos Wayback Machine
- ^ See Erich Hau: Windkraftanlagen: Grundlagen, Technik, Einsatz, Wirtschaftlichkeit. Berlin/ Heidelberg 2008, pp. 621. (German). (For the english Edition see Erich Hau, Wind Turbines: Fundamentals, Technologies, Application, Economics, Springer 2005)
- ^ "Innovation in Wind Turbine Design" (2011), Peter Jamieson
- ^ «Spiral Magnus|MECARO|Introducuction to Magnus». Mecaro.jp. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ «Ram Air Turbine Electrical Systems». UTC Aerospace Systems. UTC Aerospace Systems. 2016.
- ^ Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter (2015). «Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry». Mechanical Systems and Signal Processing. 62-63: 284–295. Bibcode:2015MSSP...62..284B. doi:10.1016/j.ymssp.2015.03.021.
- ^ Using Stereophotogrammetry to Measure Vibrations of a Rotating Wind Turbine
- ^ a b Ancona, Dan; Jim, McVeigh. «Wind Turbine – Materials and Manufacturing Fact Sheet». psu.edu. Besøkt 6 November 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Watson, James; Serrano, Juan. «Composite Materials for Wind Blades». windsystemsmag.com. Besøkt 6 November 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Davis, imphatic Labs, Garrett. «Composite Materials for Wind Blades – Wind Systems Magazine». www.windsystemsmag.com. Besøkt 12 November 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ «Wind turbine blades: Glass vs. carbon fiber». www.compositesworld.com. Besøkt 12 November 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Ong & Tsai, Cheng-Huat & Stephen W. (2000). «The Use of Carbon Fibers in Wind Turbine Blade Design» (PDF). energy.sandia.gov.
- ^ Frost and Sullivan, 2009, cited in Wind Generator Technology, by Eclareon S.L., Madrid, May 2012; www.eclareon.com; Available at Leonardo Energy – Ask an Expert; http://www.leonardo-energy.org/ask-expert
- ^ Wilburn, David. «Wind Energy in the United States and Materials Required for the Land-Based Wind Turbine Industry From 2010 Through 2030» (PDF). U.S. Department of the Interior.
- ^ Yap, Chui-Wei. «China Ends Rare-Earth Minerals Export Quotas». wsg.com.
- ^ Young, Kathryn (3 August 2007). «Canada wind farms blow away turbine tourists». Edmonton Journal. Besøkt 6 September 2008. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Anon. «Solar & Wind Powered Sign Lighting». Energy Development Cooperative Ltd. Besøkt 19 October 2013. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Small Wind, U.S. Department of Energy National Renewable Energy Laboratory website
- ^ Meyers, Johan (2011). «Optimal turbine spacing in fully developed wind farm boundary layers». Wind Energy. 15: 305–317. Bibcode:2012WiEn...15..305M. doi:10.1002/we.469.
- ^ Print version (18 January 2011). «Optimal spacing for wind turbines». Gazette.jhu.edu. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ «M. Calaf, C. Meneveau and J. Meyers, "Large Eddy Simulation study of fully developed wind-turbine array boundary layers" (2010), Phys. Fluids 22, 015110». Link.aip.org. Besøkt 6 November 2013. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Dabiri, J. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays (2011), J. Renewable Sustainable Energy 3, 043104
- ^ G.J.W. van Bussel, PhD; M.B. Zaaijer, MSc Reliability, Availability and Maintenance aspects of large-scale offshore wind farms page 2 Delft University of Technology, 2001.
- ^ «Iberwind builds on 98% availability with fresh yaw, blade gains». 15 February 2016. Besøkt 30 May 2016. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Morten Lund (30 May 2016). «Dansk firma sætter prisbelønnet selvhejsende kran i serieproduktion». Ingeniøren. Besøkt 30 May 2016. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Jeremy Fugleberg (8 May 2014). «Abandoned Dreams of Wind and Light». Atlas Obscura. Besøkt 30 May 2016. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Tom Gray (11 March 2013). «Fact check: About those 'abandoned' turbines ...». American Wind Energy Association. Besøkt 30 May 2016. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ «Aldrende havmølleparker åbner marked for klog nedrivning». Ingeniøren. Besøkt 20 May 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ «Så mye billigere er vindkraft enn kull og gass i Norge». Tu.no (på norsk). Besøkt 9. januar 2018.
- ^ a b c «Advantages and Disadvantages of Wind Energy - Clean Energy Ideas». Clean Energy Ideas (på English). 19. juni 2013.
- ^ Systems, eZ. «Kostnader og investering / Økonomi / Vindportalen / Hjem - Vindinfo». www.vindportalen.no (på norsk). Besøkt 9. januar 2018.
- ^ «Residential Wind Energy Systems - Bergey Wind PowerBergey Wind Power». bergey.com (på English). Besøkt 10. mai 2017.
- ^ «About Wind Energy: Factsheets and Statistics». www.pawindenergynow.org. Besøkt 10. mai 2017.
- ^ Mal:Web link
- ^ Hosansky, David (April 1, 2011). «Wind Power: Is wind energy good for the environment?». CQ Researcher. Sjekk datoverdier i
|dato=
(hjelp) - ^ Sovacool, B. K. (2013). The avian benefits of wind energy: A 2009 update. Renewable Energy, 49, 19-24.
- ^ Wittrup, Sanne. "Power from Vestas' giant turbine" (in Danish. English translation ). Ingeniøren, 28 January 2014. Retrieved 28 January 2014.
- ^ http://www.mhivestasoffshore.com: "[4]", retrieved 19 June 2017.
- ^ http://www.windpowermonthly.com/article/1401293/siemens-confirms-8mw-turbine
- ^ «Visits : Big wind turbine». Besøkt 17 April 2010. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ «Wind Energy Power Plants in Canada – other provinces». 5 June 2010. Besøkt 24 August 2010. Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ «Riva Calzoni M33 Single Bladed Wind Turbine». Besøkt 4 January 2018. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ http://www.windpoweroffshore.com/article/1207686/close---aerodyns-6mw-offshore-turbine-design
- ^ http://www.windpowermonthly.com/article/1188373/ming-yang-install-65mw-offshore-turbine
- ^ David Weston. "Aerodyn 6MW connected to grid" 12 March 2015. Archive
- ^ http://www.windpowermonthly.com/article/1400374/nordex-installs-230-metre-onshore-turbine
- ^ «EXCLUSIVE: Vestas tests four-rotor concept turbine». Windpower Monthly. Besøkt 20 April 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Sanne Wittrup. «Vestas rejser usædvanlig ny multirotor-vindmølle». Ingeniøren. Besøkt 20 April 2016. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ Video of quadrotor på YouTube
- ^ «Surpassing Matilda: record-breaking Danish wind turbines». Besøkt 26 July 2010. Sjekk datoverdier i
|besøksdato=
(hjelp) - ^ http://www.guinnessworldrecords.com/world-records/highest-altitude-wind-generator
- ^ http://www.lehighvalleylive.com/bethlehem/index.ssf/2013/08/northampton_community_college_53.html
- ^ Patel, Prachi (22 June 2009). «Floating Wind Turbines to Be Tested». IEEE Spectrum. Besøkt 7 March 2011. «will test how the 2.3-megawatt turbine holds up in 220-meter-deep water.» Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp) - ^ Madslien, Jorn (8 September 2009). «Floating challenge for offshore wind turbine». BBC News. Besøkt 7 March 2011. «world's first full-scale floating wind turbine» Sjekk datoverdier i
|besøksdato=, |dato=
(hjelp)
Further reading
[rediger | rediger kilde]- Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi: Wind Energy Handbook, John Wiley & Sons, 2nd edition (2011), ISBN 978-0-470-69975-1
- Darrell, Dodge, Early History Through 1875, TeloNet Web Development, Copyright 1996–2001
- Ersen Erdem, Wind Turbine Industrial Applications
- Robert Gasch, Jochen Twele (ed.), Wind power plants. Fundamentals, design, construction and operation, Springer 2012 ISBN 978-3-642-22937-4.
- Erich Hau, Wind turbines: fundamentals, technologies, application, economics Springer, 2013 ISBN 978-3-642-27150-2 (preview on Google Books)
- Siegfried Heier, Grid integration of wind energy conversion systems John Wiley & Sons, 3rd edition (2014), ISBN 978-1-119-96294-6
- Peter Jamieson, Innovation in Wind Turbine Design. Wiley & Sons 2011, ISBN 978-0-470-69981-2
- J. F. Manwell, J. G. McGowan, A. L. Roberts, Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, 2nd edition (2012), ISBN 978-0-47001-500-1
- David Spera (ed,) Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition (2009), ASME Press, ISBN 9780791802601
- Alois Schaffarczyk (ed.), Understanding wind power technology, John Wiley & Sons, (2014), ISBN 978-1-118-64751-6
- Hermann-Josef Wagner, Jyotirmay Mathur, Introduction to wind energy systems. Basics, technology and operation. Springer (2013), ISBN 978-3-642-32975-3
- GA Mansoori, N Enayati, LB Agyarko (2016), Energy: Sources, Utilization, Legislation, Sustainability, Illinois as Model State
External links
[rediger | rediger kilde]- Harvesting the Wind (45 lectures about wind turbines by professor Magdi Ragheb
- Wind Projects
- DIY wind turbine at home Complete video and image Guide by Newphysicist
- Guided tour on wind energy
- U.S. Wind Turbine Manufacturing: Federal Support for an Emerging Industry Congressional Research Service
- Wind Energy Technology World Wind Energy Association
- Wind turbine simulation, National Geographic
- Airborne Wind Industry Association international
- Top 21 Biggest Wind Turbines in the World
- The Tethys database seeks to gather, organize and make available information on potential environmental effects of offshore wind energy development
- Wind Turbine production. How It's Made. 2013.
[[Category:Aerodynamics]] [[Category:Electric power]] [[Category:Electrical generators]] [[Category:Electromechanical engineering]] [[Category:Energy conversion]] [[Category:Wind turbines| ]]