Nothing Special   »   [go: up one dir, main page]

nLab reduction modality (changes)

Showing changes from revision #7 to #8: Added | Removed | Changed

Context

Cohesion

Modalities, Closure and Reflection

Contents

Idea

In a context of synthetic differential geometry/differential cohesion the reduction modality characterizes reduced objects. It forms itself the left adjoint in an adjoint modality with the infinitesimal shape modality.

Definition

A context of differential cohesion is determined by the existence of an adjoint triple of modalities

&, \Re \dashv \Im \dashv \& \,,

where \Re and &\& are idempotent comonads and \Im is an idempotent monad . , furthermore\Re preserves finite products.

Here \Re is the reduction modality. The reflective subcategory that it defines is that of reduced objects.

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive esh discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Last revised on June 6, 2017 at 03:16:41. See the history of this page for a list of all contributions to it.