Nothing Special   »   [go: up one dir, main page]

nLab M5-brane elliptic genus (changes)

Showing changes from revision #4 to #5: Added | Removed | Changed

Contents

Idea

The M5-brane elliptic genus is the elliptic genus imagined to arise as the M5-brane partition function when the M5-brane worldvolume-theory is seen as a 2d SCFT after KK-compactification on a 4-manifold/complex surface (as in the AGT correspondence).

References

M5-brane Elliptic elliptic genera genus as superpp-brane partition functions

The interpretation of elliptic genera (especially the Witten genus) as the partition function of a 2d superconformal field theory (or Landau-Ginzburg model) – and especially of the heterotic string (“H-string”) or type II superstring worldsheet theory has precursors in

and then strictly originates with:

Review in:

With emphasis on orbifold CFTs:

Formulations

Via super vertex operator algebra

Formulation via super vertex operator algebras:

and for the topologically twisted 2d (2,0)-superconformal QFT (the heterotic string with enhanced supersymmetry) via sheaves of vertex operator algebras in

based on chiral differential operators:

In relation to error-correcting codes:

  • Kohki Kawabata, Shinichiro Yahagi, Elliptic genera from classical error-correcting codes [[arXiv:2308.12592]]
Via Dirac-Ramond operators on free loop space

Tentative interpretation as indices of Dirac-Ramond operators as would-be Dirac operators on smooth loop space:

Via conformal nets

Tentative formulation via conformal nets:

Conjectural interpretation in tmf-cohomology

The resulting suggestion that, roughly, deformation-classes (concordance classes) of 2d SCFTs with target space XX are the generalized cohomology of XX with coefficients in the spectrum of topological modular forms (tmf):

and the more explicit suggestion that, under this identification, the Chern-Dold character from tmf to modular forms, sends a 2d SCFT to its partition function/elliptic genus/supersymmetric index:

This perspective is also picked up in Gukov, Pei, Putrov & Vafa 18.

Discussion of the 2d SCFTs (namely supersymmetric SU(2)-WZW-models) conjecturally corresponding, under this conjectural identification, to the elements of /24\mathbb{Z}/24 \simeq tmf 3(*)=π 3(tmf) tmf^{-3}(\ast) = \pi_3(tmf) \simeq π 3(𝕊)\pi_3(\mathbb{S}) (the third stable homotopy group of spheres):

Discussion properly via (2,1)-dimensional Euclidean field theory:

See also:

Occurrences in string theory

H-string elliptic genus

Further on the elliptic genus of the heterotic string being the Witten genus:

The interpretation of equivariant elliptic genera as partition functions of parametrized WZW models in heterotic string theory:

Proposals on physics aspects of lifting the Witten genus to topological modular forms:

M5-brane elliptic genus

On the M5-brane elliptic genus:

A 2d SCFT argued to describe the KK-compactification of the M5-brane on a 4-manifold (specifically: a complex surface) originates with

Discussion of the resulting elliptic genus (2d SCFT partition function) originates with:

Further discussion in:

M-string elliptic genus

M-string elliptic genus

On the elliptic genus of M-strings inside M5-branes:

E-string elliptic genus

E-string elliptic genus

On the elliptic genus of E-strings as wrapped M5-branes:

On the elliptic genus of E-strings as M2-branes ending on M5-branes:

Last revised on November 19, 2020 at 18:01:12. See the history of this page for a list of all contributions to it.