Fork me on GitHub
Nothing Special   »   [go: up one dir, main page]

src/arraymancer/autograd/autograd_common

  Source Edit

Types

Backward[TT] = proc (self: Gate[TT]; payload: Payload[TT]): SmallDiffs[TT] {.
    nimcall.}
⚠️ Warning: make sure the identifier is not overloaded https://github.com/nim-lang/Nim/issues/9997   Source Edit
Context[TT] = ref object
An autograd context is a record of operations or layers. It holds the following fields:
  • nodes: This records the list of operations(Node) applied in the context
  • no_grad: This disable tracing the list of operations altogether. This is useful to save memory when you don't need the gradient (for validation or prediction for example)

A context is also called a tape or a Wengert list.

Note: backpropagation empties the list of operations.

  Source Edit
Gate[TT] = ref object of RootObj
Base operator or layer. You can describe your custom operations or layers by inheriting from Gate and add a forward and optionally a backward method. Each operations should set the number of gradients produced during backpropagation. Additional fields specific to the operations like weights or inputs cache should be added too.   Source Edit
Payload[TT] = object
  case kind*: PayloadKind
  of pkVar:
    variable*: Variable[TT]
  of pkSeq:
    sequence*: seq[Variable[TT]]
  Source Edit
PayloadKind = enum
  pkVar, pkSeq
  Source Edit
SmallDiffs[TT] = seq[TT]
  Source Edit
Variable[TT] = ref object
  context*: Context[TT]
  value*: TT
  grad*: TT
  requires_grad*: bool
A variable is a wrapper for Tensors that tracks operations applied to it. It consists of:
  • A weak reference to a record of operations context
  • The tensor being tracked value
  • The gradient of the tensor grad
  • a flag that indicates if gradient is needed
  Source Edit

Procs

proc backprop[TT](v: Variable[TT])
Differentiate the chain of operations w.r.t to this variable. Context will be reset   Source Edit
func check_ctx(a, b: Variable) {.inline.}
  Source Edit
func is_grad_needed(v: Variable): bool {.inline.}
Depending on the input variable and its context no_grad_mode, returns true if gradient computation is needed and false otherwise   Source Edit
func newContext(TT: typedesc): Context[TT]
Initialize a context   Source Edit
func newDiffs[TT](num: Natural): SmallDiffs[TT] {.inline.}
  Source Edit
func newParents[TT](num: Natural): Parents[TT] {.inline.}
  Source Edit
func register_node[TT](name: static string; gate: Gate[TT];
                       backward: Backward[TT];
                       result: Variable[TT] or seq[Variable[TT]];
                       parents: varargs[Variable[TT]])
Add an operation / gate as a new node in the computation graph   Source Edit
proc variable[TT](ctx: Context[TT]; value: TT; requires_grad = false): Variable[
    TT]
Wrap a variable to the context T is a Tensor[T, CudaTensorT or scalar T   Source Edit

Templates

template no_grad_mode(ctx: Context; body: untyped): untyped

Within this block, the context will not track the operations applied to each Variable.

This should be used for validation or prediction to optimize memory.

  Source Edit
Arraymancer Technical reference Tutorial Spellbook (How-To's) Under the hood