Nothing Special   »   [go: up one dir, main page]

Loewenstein Y et al. (2005). Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature neuroscience. 8 [PubMed]

See more from authors: Loewenstein Y · Mahon S · Chadderton P · Kitamura K · Sompolinsky H · Yarom Y · Häusser M

References and models cited by this paper

Armstrong DM, Rawson JA. (1979). Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. The Journal of physiology. 289 [PubMed]

BROOKHART JM, MORUZZI G, SNIDER RS. (1950). Spike discharges of single units in the cerebellar cortex. Journal of neurophysiology. 13 [PubMed]

Bauswein E, Kolb FP, Rubia FJ. (1984). Cerebellar feedback signals of a passive hand movement in the awake monkey. Pflugers Archiv : European journal of physiology. 402 [PubMed]

Bell CC, Grimm RJ. (1969). Discharge properties of Purkinje cells recorded on single and double microelectrodes. Journal of neurophysiology. 32 [PubMed]

Brown IE, Bower JM. (2001). Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. 3.0.co;2-3">The Journal of comparative neurology. 429 [PubMed]

Camperi M, Wang XJ. (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. Journal of computational neuroscience. 5 [PubMed]

Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]

Chang F, Cohen IS, DiFrancesco D, Rosen MR, Tromba C. (1991). Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i(f). The Journal of physiology. 440 [PubMed]

Ebner TJ, Bloedel JR. (1981). Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. Journal of neurophysiology. 45 [PubMed]

Edgley SA, Lidierth M. (1988). Step-related discharges of Purkinje cells in the paravermal cortex of the cerebellar anterior lobe in the cat. The Journal of physiology. 401 [PubMed]

Egorov AV, Hamam BN, Fransén E, Hasselmo ME, Alonso AA. (2002). Graded persistent activity in entorhinal cortex neurons. Nature. 420 [PubMed]

Ekerot CF, Kano M. (1985). Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain research. 342 [PubMed]

Fuster JM. (1973). Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. Journal of neurophysiology. 36 [PubMed]

GRANIT R, PHILLIPS CG. (1956). Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. The Journal of physiology. 133 [PubMed]

Genet S, Delord B. (2002). A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. Journal of neurophysiology. 88 [PubMed]

Goldman MS, Levine JH, Major G, Tank DW, Seung HS. (2003). Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cerebral cortex (New York, N.Y. : 1991). 13 [PubMed]

Hartigan JA, Hartigan PM. (1985). The dip test of unimodality Ann Stat. 13

Heyward P, Ennis M, Keller A, Shipley MT. (2001). Membrane bistability in olfactory bulb mitral cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Hirata Y, Highstein SM. (2000). Analysis of the discharge pattern of floccular Purkinje cells in relation to vertical head and eye movement in the squirrel monkey. Progress in brain research. 124 [PubMed]

Hounsgaard J, Midtgaard J. (1988). Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro. The Journal of physiology. 402 [PubMed]

Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]

Ito M. (1984). The Cerebellum And Neural Control.

Jörntell H, Ekerot CF. (2003). Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Kobayashi Y et al. (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. Journal of neurophysiology. 80 [PubMed]

Koulakov AA, Raghavachari S, Kepecs A, Lisman JE. (2002). Model for a robust neural integrator. Nature neuroscience. 5 [PubMed]

Lee RH, Heckman CJ. (1998). Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. Journal of neurophysiology. 80 [PubMed]

Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]

Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]

Loewenstein Y, Sompolinsky H. (2003). Temporal integration by calcium dynamics in a model neuron. Nature neuroscience. 6 [PubMed]

Mahon S, Deniau JM, Charpier S. (2001). Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cerebral cortex (New York, N.Y. : 1991). 11 [PubMed]

Mann-Metzer P, Yarom Y. (1999). Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Marder E, Abbott LF, Turrigiano GG, Liu Z, Golowasch J. (1996). Memory from the dynamics of intrinsic membrane currents. Proceedings of the National Academy of Sciences of the United States of America. 93 [PubMed]

Margrie TW, Brecht M, Sakmann B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Archiv : European journal of physiology. 444 [PubMed]

McCarley RW, Hobson JA. (1972). Simple spike firing patterns of cat cerebellar Purkinje cells in sleep and waking. Electroencephalography and clinical neurophysiology. 33 [PubMed]

McCormick DA et al. (2003). Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cerebral cortex (New York, N.Y. : 1991). 13 [PubMed]

McDevitt CJ, Ebner TJ, Bloedel JR. (1982). The changes in Purkinje cell simple spike activity following spontaneous climbing fiber inputs. Brain research. 237 [PubMed]

Midtgaard J, Lasser-Ross N, Ross WN. (1993). Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current. Journal of neurophysiology. 70 [PubMed]

Nacimiento RC. (1969). Spontaneous and evoked discharges of cerebellar Purkinje cells in the frog Neurobiology of Cerebellar Evolution and Development.

Rapp M, Segev I, Yarom Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. The Journal of physiology. 474 [PubMed]

Rawson JA, Tilokskulchai K. (1981). Repetitive firing of cerebellar Purkinje cells in response to impulse in climbing fibre afferents. Neuroscience letters. 25 [PubMed]

Rawson JA, Tilokskulchai K. (1981). Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neuroscience letters. 25 [PubMed]

Rinzel J, Ermentrout B. (1998). Analysis of neural excitability and oscillations. Methods In Neuronal Modeling 2nd Edition.

Sato Y, Miura A, Fushiki H, Kawasaki T. (1992). Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input. Journal of neurophysiology. 68 [PubMed]

Shu Y, Hasenstaub A, McCormick DA. (2003). Turning on and off recurrent balanced cortical activity. Nature. 423 [PubMed]

Wang SS, Denk W, Häusser M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature neuroscience. 3 [PubMed]

Williams SR, Christensen SR, Stuart GJ, Häusser M. (2002). Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. The Journal of physiology. 539 [PubMed]

Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V. (1997). The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. The Journal of physiology. 505 ( Pt 3) [PubMed]

Yuen GL, Hockberger PE, Houk JC. (1995). Bistability in cerebellar Purkinje cell dendrites modelled with high-threshold calcium and delayed-rectifier potassium channels. Biological cybernetics. 73 [PubMed]

References and models that cite this paper

Buchin A, Rieubland S, Häusser M, Gutkin BS, Roth A. (2016). Inverse Stochastic Resonance in Cerebellar Purkinje Cells. PLoS computational biology. 12 [PubMed]

Couto J, Linaro D, De Schutter E, Giugliano M. (2015). On the firing rate dependency of the phase response curve of rat Purkinje neurons in vitro. PLoS computational biology. 11 [PubMed]

Cunningham MO et al. (2006). Neuronal metabolism governs cortical network response state. Proceedings of the National Academy of Sciences of the United States of America. 103 [PubMed]

Fardet T, Levina A. (2020). Simple Models Including Energy and Spike Constraints Reproduce Complex Activity Patterns and Metabolic Disruptions PLoS computational biology. 16 [PubMed]

Fernandez FR, Engbers JD, Turner RW. (2007). Firing dynamics of cerebellar purkinje cells. Journal of neurophysiology. 98 [PubMed]

Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]

Genet S, Sabarly L, Guigon E, Berry H, Delord B. (2010). Dendritic signals command firing dynamics in a mathematical model of cerebellar Purkinje cells. Biophysical journal. 99 [PubMed]

Lin RJ, Jaeger D. (2011). Using computer simulations to determine the limitations of dynamic clamp stimuli applied at the soma in mimicking distributed conductance sources. Journal of neurophysiology. 105 [PubMed]

Luthman J et al. (2011). STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum (London, England). 10 [PubMed]

Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Nicoletti M et al. (2019). Biophysical modeling of C. elegans neurons: Single ion currents and whole-cell dynamics of AWCon and RMD PloS one. 14 [PubMed]

Okamoto H, Isomura Y, Takada M, Fukai T. (2007). Temporal integration by stochastic recurrent network dynamics with bimodal neurons. Journal of neurophysiology. 97 [PubMed]

Ratté S, Karnup S, Prescott SA. (2018). Nonlinear Relationship Between Spike-Dependent Calcium Influx and TRPC Channel Activation Enables Robust Persistent Spiking in Neurons of the Anterior Cingulate Cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 38 [PubMed]

Steuber V et al. (2007). Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 54 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.