Nothing Special   »   [go: up one dir, main page]

Oertel D. (1983). Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 3 [PubMed]

See more from authors: Oertel D

References and models cited by this paper
References and models that cite this paper

Bahmer A, Langner G. (2009). A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons. Biological cybernetics. 100 [PubMed]

Kalluri S, Delgutte B. (2003). Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. Journal of computational neuroscience. 14 [PubMed]

Kalluri S, Delgutte B. (2003). Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state. Journal of computational neuroscience. 14 [PubMed]

Kim DO, D'angelo WR. (2000). Computational model for the bushy cell of the cochlear nucleus Neurocomputing.

Kuhlmann L, Burkitt AN, Paolini A, Clark GM. (2002). Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input. Journal of computational neuroscience. 12 [PubMed]

London M, Schreibman A, Häusser M, Larkum ME, Segev I. (2002). The information efficacy of a synapse. Nature neuroscience. 5 [PubMed]

Manis PB, Campagnola L. (2018). A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks. Hearing research. 360 [PubMed]

Nelson PC, Carney LH. (2004). A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. The Journal of the Acoustical Society of America. 116 [PubMed]

Rothman JS, Manis PB. (2003). The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. Journal of neurophysiology. 89 [PubMed]

Rothman JS, Manis PB. (2003). Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. Journal of neurophysiology. 89 [PubMed]

Rothman JS, Manis PB. (2003). Differential expression of three distinct potassium currents in the ventral cochlear nucleus. Journal of neurophysiology. 89 [PubMed]

Spirou GA, Rager J, Manis PB. (2005). Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience. 136 [PubMed]

Svirskis G, Kotak V, Sanes DH, Rinzel J. (2002). Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Verhulst S, Altoè A, Vasilkov V. (2018). Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing research. 360 [PubMed]

Zhang X, Carney LH. (2005). Response properties of an integrate-and-fire model that receives subthreshold inputs. Neural computation. 17 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.