Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Information and communication technologies use, gender and mathematics achievement: evidence from Italy

  • Published:
Social Psychology of Education Aims and scope Submit manuscript

Abstract

This study investigates the importance of information and communication technology (ICT) use in the mathematics achievement scores of Italian secondary school students, with particular attention paid to the role of gender in the ICT-maths performance relationship. Data from the 2012 Programme for International Student Assessment study allow to describe (a) how the type and intensity of ICT use are associated with high or low maths achievement and (b) how the association varies according to gender. These issues are examined with respect to different maths domains. The results of multilevel models show a complex scenario. A positive association between ICT use and mathematics achievement occurs only when computers are used for some, not all, activities. In other cases, the association is negative. In general, the ICT-maths performance association is weaker for girls. Some exceptions to this general trend are the benefits of certain ICT applications, only for girls, in Shape and Space and in Uncertainty and Data subscales of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. These macros are based on the PV method, which, combined with replicates, requires that regression coefficients, such as any other parameters, are computed 405 times (i.e. five PVs of one student’s final weights and 80 replicates). .

  2. In fact, some selection in the missing data exists because as observed in other studies (see, for example, Gilleece et al. 2010), low-achieving students are more likely to present missing data. This issue should be taken into account when interpreting results (see footnote 11).

  3. Gaming activities include the items “Play one-player games” and “Play collaborative online game”.

  4. Activities based on the following items: “Use e-mail”, “Chat on line”, “Participate in social networks (such as Facebook and MySpace)”, “Upload personal contents (such as music, videos and softwares) to share them with others”, “Use e-mail for communication with other students about schoolwork”, “Use e-mail for communication with teachers and submission of homework or other schoolwork”, “Chat on line at school”, “Use e-mail at school”, “Use school computers for group work and communication with other students”.

  5. The corresponding items are: “Browse the Internet for fun (for example watching videos in YouTube)”, “Download music, films, games or software from the Internet”, “Browse the Internet for schoolwork”, “Download, upload or browse material from your school’s website”, “Check the school’s website for announcements”, “Browse the Internet for schoolwork” (at school), “Download, upload or browse material from your school’s website” (at school), “Post your work on the school’s website”.

  6. The corresponding items are: “Do homework on a computer”, “Play simulations at school”, “Practice and drilling, such as for foreign language learning or mathematics”, “Do individual homework on a school computer”.

  7. The activities are the following: “Draw the graph of a function”, “Calculate with numbers”, “Construct geometric figures”, “Enter data in a spreadsheet”, “Rewrite algebraic expressions and solving equations”, “Draw histograms”, “Find out how the graph of a function like y = ax 2 changes depending on a”.

  8. A total of 126 students (corresponding to 0.4%) living with neither parents are included in this group given that their limited sample size does not allow for separate consideration. Nevertheless, excluding them from the analyses does not change the results.

  9. Data from a questionnaire on school environment completed by school principals are not used since the percentages of missing data were not negligible for many variables.

  10. We refer to the classification used by Cohen (1969) which defined effects sizes as small (d = 0.2), medium (d = 0.5) and large (d = 0.8).

  11. We cannot exclude that this result holds mainly for high-achieving students (see footnote 2).

References

  • Ainley, J., Enger, L., & Searle, D. (2008). Students in digital age: Implications of ICT for teaching and learning. In J. Voogt & G. Knezek (Eds.), International handbook of information technology in primary and secondary education (pp. 63–80). New York: Springer.

    Chapter  Google Scholar 

  • Attewell, P., & Battle, J. (1999). Home computers and school performance. The Information Society, 15(1), 1–10. https://doi.org/10.1080/019722499128628.

    Google Scholar 

  • Avvisati, F., Hennessy, S., Kozma, R. B., & Vincent-Lancrin, S. (2013). Review of the Italian strategy for digital schools. OECD education working papers series n. 90, OECD Publishing.

  • Azzolini, D., Schnell, P., & Palmer, J. R. B. (2012). Educational achievement gaps between immigrant and native students in two “new” immigration countries. Italy and Spain in comparison. The Annals of the American Academy of Political and Social Science, 643(1), 46–77. https://doi.org/10.1177/0002716212441590.

    Article  Google Scholar 

  • Barkatsas, A., Kasimatis, K., & Gialamas, V. (2009). Learning secondary mathematics with technology: Exploring the complex interrelationship between students’ attitudes, engagement, gender and achievement. Computers & Education, 52(3), 562–570. https://doi.org/10.1016/j.compedu.2008.11.001.

    Article  Google Scholar 

  • Barone, C., & Schizzerotto, A. (2006). Sociologia dell’istruzione (Sociology of Education). Bologna: Il Mulino.

    Google Scholar 

  • Berkman, R. M. (2004). The chess and mathematics connection: More than just a game. Mathematics Teaching in the Middle School, 9, 246–250.

    Google Scholar 

  • Biagi, F., & Loi, M. (2013). Measuring ICT use and learning outcomes: Evidence from recent econometric studies. European Journal of Education, 48(1), 28–42. https://doi.org/10.1111/ejed.12016.

    Article  Google Scholar 

  • Bilalić, M., McLeod, P., & Gobet, F. (2007a). Does chess need intelligence? A study with young chess players. Intelligence, 35(5), 457–470. https://doi.org/10.1016/j.intell.2006.09.005.

    Article  Google Scholar 

  • Bilalić, M., McLeod, P., & Gobet, F. (2007b). Personality profiles of young chess players. Personality and Individual Differences, 42(6), 901–910. https://doi.org/10.1016/j.paid.2006.08.025.

    Article  Google Scholar 

  • Bocconi, S., Kampylis, P., & Punie, Y. (2012). Innovating teaching and learning practices: Key elements for developing creative classrooms in Europe. eLearning Papers, n. 30, pp. 1–13.

  • Borghans, L., & ter Weel, B. (2004). Are computers skills the new basic skills? The returns to computer, writing and math skills in Britain. Labour Economics, 11, 85–98. https://doi.org/10.1016/S0927-5371(03)00054-X.

    Article  Google Scholar 

  • Bornstein, M. H., & Bradley, R. H. (Eds.). (2003). Socio-economic status, parenting, and child development. Mahwah, NJ: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Bratti, M., Checchi, D., & Filippin, A. (2007a). Geographical differences in Italian students’ mathematical competencies: evidence from PISA 2003. Giornale degli Economisti e Annali di Economica, 66(3), 299–333.

    Google Scholar 

  • Bratti, M., Checchi, D., & Filippin, A. (2007b). Da dove vengono le competenze degli studenti? (Where are students’ competences from?). Bologna: Il Mulino.

    Google Scholar 

  • Cahill, L. (2005). His brain, her brain. Scientific American, 292(5), 40–47. https://doi.org/10.1038/scientificamerican0505-40.

    Article  Google Scholar 

  • Calzarossa, M., Ciancarini, P., Mich, L., & Scarabottolo, N. (2009). ICT teaching and certification in Italian high schools. In C. Hermann, T. Lauere, T. Ottmannn, & M. Welte (Eds.), Proc. IV informatics education Europe (pp. 89–94). Freiburg, Germany.

  • Calzarossa, M., Ciancarini, P., Mich, L., & Scarabottolo, N. (2011). Informatics education in Italian high schools. In I. Kalas & R. T. Mittermeir (Eds.), Informatics in School (pp. 31–42). Springer.

  • Chisalita, O. A., & Cretu, C. (2014). What do PISA 2012 results tell us about European students’ ICT access, ICT use and ICT attitudes?. In Proceedings of the 10th International Scientific Conference eLSE (eLearning and Software for Education), Bucharest, 24–25 April, 2014.

  • Chiu, M. M., & Khoo, L. (2005). Effects of resources, inequality, and privilege bias on achievement. American Educational Research Journal, 42, 575–603. https://doi.org/10.3102/00028312042004575.

    Article  Google Scholar 

  • Chiu, M. M., & McBride-Chang, C. (2006). Gender, context, and reading: A comparison of students in 43 countries. Scientific Studies of Reading, 10(4), 331–362. https://doi.org/10.1207/s1532799xssr1004_1.

    Article  Google Scholar 

  • Chiu, M. M., & Xihua, Z. (2008). Family and motivation effects on mathematics achievement: Analyses of students in 41 countries. Learning and Instruction, 18(4), 321–336. https://doi.org/10.1016/j.learninstruc.2007.06.003.

    Article  Google Scholar 

  • Close, S., & Shiel, G. (2009). Gender and PISA mathematics: Irish results in context. European Educational Research Journal, 8(1), 20–33. https://doi.org/10.2304/eerj.2009.8.1.20.

    Article  Google Scholar 

  • Cohen, J. (1969). Statistical power analysis for the behavioral sciences. NY: Academic Press.

    Google Scholar 

  • Cooper, J. (2006). The digital divide: The special case of gender. Journal of Computer Assisted learning, 22, 320–334. https://doi.org/10.1111/j.1365-2729.2006.00185.x.

    Article  Google Scholar 

  • Cosgrove, J., & Cunningham, R. (2011). A multilevel model of science achievement of Irish students participating in the 2006 Programme for International Student Assessment. Irish Journal of Education, 39, 57–73. https://doi.org/10.2307/41548684.

    Google Scholar 

  • De Lisi, R., & McGillicuddy-De Lisi, A. (2002). Sex differences in mathematical abilities and achievement. In A. McGillicuddy-De Lisi & R. De Lisi (Eds.), Biology, society, and behavior: The development of sex differences in cognition (pp. 155–181). Westport, CT: Ablex.

  • De Witte, K., & Rogge, N. (2014). Does ICT matter for effectiveness and efficiency in mathematics education? Computers & Education, 75, 173–184. https://doi.org/10.1016/j.compedu.2014.02.012.

    Article  Google Scholar 

  • Di Maggio, P., Hargittai, E., Celeste, C., & Shafer, S. (2004). From unequal access to differentiated use: A literature review and agenda for research on digital inequality. In K. Neckerman (Ed.), Social inequality (pp. 355–400). New York: Russell Sage Found.

    Google Scholar 

  • Drabowicz, T. (2014). Gender and digital usage inequality among adolescents: A comparative study of 39 countries. Computers & Education, 74, 98–111. https://doi.org/10.1016/j.compedu.2014.01.016.

    Article  Google Scholar 

  • Dronkers, J., & Robert, P. (2008). Differences in scholastic achievement of public, private government-dependent, and private independent schools. A Cross-National Analysis. Educational Policy, 22(4), 541–577. https://doi.org/10.1177/0895904807307065.

    Google Scholar 

  • Ferrari, A. (2012). Digital competence in practice: An analysis of frameworks (JRC Technical Reports). European Commission, Luxembourg.

  • Ferrer, F., Belvís, E., & Pàmies, J. (2011). Tablet PCs, academic results and educational inequalities. Computers & Education, 56(1), 280–288. https://doi.org/10.1016/j.compedu.2010.07.018.

    Article  Google Scholar 

  • Fuchs, T., & Wömann, L. (2005). Computers and student learning: Bivariate and multivariate evidence on availability and use of computers at home and at schools. IFOWorking Paper No.8, Munich.

  • Gallagher, A. M., & Kaufman, J. C. (Eds.). (2005). Gender differences in mathematics: An integrative psychological approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gierl, M. J., Bisanz, J., Bisanz, G. L., & Boughton, K. A. (2003). Identifying content and cognitive skills that produce gender differences in mathematics: A demonstration of the multidimensionality-based DIF analysis paradigm. Journal of Educational Measurement, 40(4), 281–306. https://doi.org/10.1111/j.1745-3984.2003.tb01148.x.

    Article  Google Scholar 

  • Gilleece, L., Cosgrove, J., & Sofroniou, N. (2010). Equity in mathematics and science outcomes: Characteristics associated with high and low achievement on PISA 2006 in Ireland. International Journal of Science and Mathematics Education, 8(3), 475–496. https://doi.org/10.1007/s10763-010-9199-2.

    Article  Google Scholar 

  • Grabner, R. H., Stern, E., & Neubauer, A. C. (2007). Individual differences in chess expertise: A psychometric investigation. Acta Psychologica, 124(3), 398–420. https://doi.org/10.1016/j.actpsy.2006.07.008.

    Article  Google Scholar 

  • Gui, M., Micheli, M., & Fiore, B. (2014). Is the internet creating a ‘learning gap’ among students? Evidence from the Italian PISA data. Italian Journal of Sociology of Education, 6(1), 1–24.

    Google Scholar 

  • Hampden-Thompson, G., & Johnston, J. S. (2006). Variation in the relationship between non-school factors and student achievement. Washington, DC: NCES.

    Google Scholar 

  • Hanushek, E. A., Dean, T., Jamison, E. A., & Woessmann, L. (2008). Education and economic growth: It’s not just going to school but learning that matters. Education Next, 8(2), 62–70.

    Google Scholar 

  • Heemskerk, I., ten Dam, G., Volman, M., & Admiraal, W. (2009). Gender inclusiveness in educational technology and learning experiences of girls and boys. Journal of Research on Technology in Education, 41(3), 253–276. https://doi.org/10.1080/15391523.2009.10782531.

    Article  Google Scholar 

  • Judkins, D. R. (1990). Fay’s method for variance estimation. Journal of Official Statistics, 6, 223–239.

    Google Scholar 

  • Kaiser, G., & Steisel, T. (2000). Results of an analysis of the TIMS study from a gender perspective. Zentralblatt Für Didaktik Der Mathematik, 32(1), 18–24.

    Article  Google Scholar 

  • Kirriemuir, J. M. (2004). Literature review in games and learning. Bristol: Futurelab.

    Google Scholar 

  • Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. London, Thousand Oaks, New Delhi: Sage.

    Book  Google Scholar 

  • Kubiatko, M., & Vlckova, K. (2010). The relationship between ICT use and science knowledge for Czech students: A secondary analysis of PISA 2006. International Journal of Science and Mathematics Education, 8, 523–543. https://doi.org/10.1007/s10763-010-9195-6.

    Article  Google Scholar 

  • Lavy, V. (2004). Do gender stereotypes reduce girls’ human capital outcomes? Evidence from a natural experiment. NBER Working Paper 10678.

  • Lei, J., & Zhao, Y. (2007). Technology uses and student achievement: A longitudinal study. Computers & Education, 49(2), 284–296. https://doi.org/10.1016/j.compedu.2005.06.013.

    Article  Google Scholar 

  • Liu, O. L., & Wilson, M. (2009). Gender differences in large-scale math assessments: PISA trend 2000 and 2003. Applied Measurement in Education, 22, 164–184. https://doi.org/10.1080/08957340902754635.

    Article  Google Scholar 

  • Liu, O. L., Wilson, M., & Paek, I. (2008). A multidimensional Rasch analysis of gender differences in PISA mathematics. Journal of Applied Measurement, 9(1), 18–35.

    Google Scholar 

  • Livingstone, S., & Helsper, E. (2007). Gradations in digital inclusion: Children, young and the digital divide. New Media and Society, 9, 671–696. https://doi.org/10.1177/1461444807080335.

    Article  Google Scholar 

  • Luu, K., & Freeman, J. G. (2011). An analysis of the relationship between information and communication technology (ICT) and scientific literacy in Canada and Austria. Computers & Education, 56, 1072–1082. https://doi.org/10.1016/j.compedu.2010.11.008.

    Article  Google Scholar 

  • Ma, X. (2008). Within school gender gaps in reading, mathematics, and science literacy. Comparative Education Review, 52(3), 437–460. https://doi.org/10.1086/588762.

    Google Scholar 

  • Mumtaz, S. (2001). Children’s enjoyment and perception of computer use in the home and the school. Computers & Education, 36, 347–362. https://doi.org/10.1016/S0360-1315(01)00023-9.

    Article  Google Scholar 

  • Nævdal, F. (2007). Home-PC usage and achievement in English. Computers & Education, 49(4), 1112–1121. https://doi.org/10.1016/j.compedu.2006.01.003.

    Article  Google Scholar 

  • Notten, N., Jochen, P., Kraaykamp, G., & Valkenburg, P. M. (2009). Research note: Digital divide across borders—a cross-national study of adolescents’ use of digital technologies. European Sociological Review, 25(5), 551–560. https://doi.org/10.1093/esr/jcn071.

    Article  Google Scholar 

  • Nuttal, R. L., Casey, M. B., & Pezaris, E. (2005). Spatial ability as a mediator of gender differences on mathematics tests. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics (pp. 121–142). Cambridge: Cambridge University Press.

    Google Scholar 

  • OECD. (2010). PISA 2009 Results: Overcoming social background—equity in learning opportunities and outcomes (Vol. II). Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2012). PISA data analysis manual: SAS (2nd ed.). Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2014a). PISA 2012 results: What students know and can do (Vol. I) (Revised ed.). Paris: OECD Publishing.

    Book  Google Scholar 

  • OECD. (2014b). PISA 2012 Technical Report, PISA, OECD Publishing.

  • Papanastasiou, E., Zembylas, M., & Vrasidas, C. (2003). Can computer use hurt science achievement? The USA results from PISA. Journal of Science Education and Technology, 12(3), 325–332. https://doi.org/10.1023/A:1025093225753.

    Article  Google Scholar 

  • Pedró, F. (2007). The new millennium learners. Challenging our views on technology and learning. Nordic Journal of Digital Competence, 2(4), 244–264.

    Google Scholar 

  • Redecker, C., & Johannessen, O. (2013). Changing assessment: Towards a new assessment paradigm using ICT. European Journal of Education, 48(1), 79–96. https://doi.org/10.1111/ejed.12018.

    Article  Google Scholar 

  • Rosholm, M., Mikkelsen, M. B., & Gumede, K. (2017). Your move: The effect of chess on mathematics test scores. PLoS One, 12(5), e0177257. https://doi.org/10.1371/journal.pone.0177257.

    Article  Google Scholar 

  • Smihily, M. (2007). Internet usage in 2007. Households and individuals. Luxembourg: Eurostat.

    Google Scholar 

  • Snijders, T. A. B., & Bosker, R. (1999). Introduction to multilevel analysis. London: Sage.

    Google Scholar 

  • Tabatabai, D., & Shore, B. M. (2005). How experts and novices search the Web. Library & Information Science Research, 27, 222–248. https://doi.org/10.1016/j.lisr.2005.01.005.

    Article  Google Scholar 

  • Thiessen, V., & Looker, D. (2007). Digital divides and capital conversion: The optimal use of Information and Communication Technology for youth reading achievement. Information, Community and Society, 10(2), 159–180. https://doi.org/10.1080/13691180701307370.

    Article  Google Scholar 

  • Tiedemann, J. (2000). Parents’ gender stereotypes and teachers’ beliefs as predictors of children’s concept of their mathematical ability in elementary school. Journal of Educational Psychology, 92(1), 144–151. https://doi.org/10.1037/0022-0663.92.1.144.

    Article  Google Scholar 

  • Tømte, C., & Hatlevik, O. E. (2011). Gender-differences in self-efficacy ICT related to various ICT-user profiles in Finland and Norway. How do self-efficacy, gender and ICT-user profiles relate to findings from PISA 2006. Computers & Education, 57, 1416–1424. https://doi.org/10.1016/j.compedu.2010.12.011.

    Article  Google Scholar 

  • van Braak, J. (2001). Factors influencing the use of computer mediated communication by teachers in secondary schools. Computers & Education, 36(1), 41–57. https://doi.org/10.1016/S0360-1315(00)00051-8.

    Article  Google Scholar 

  • Vekiri, I. (2010). Boys’ and girls’ ICT beliefs: Do teachers matter? Computer & Education, 55(1), 16–23. https://doi.org/10.1016/j.compedu.2009.11.013.

    Article  Google Scholar 

  • Volman, M., van Eck, E., Heemskerk, I., & Kuiper, E. (2005). New technologies, new differences. Gender and ethnic differences in pupils’ use of ICT in primary and secondary education. Computers & Education, 45(1), 35–55. https://doi.org/10.1016/j.compedu.2004.03.001.

    Article  Google Scholar 

  • Wigfield, A., Battle, A., Keller, L., & Eccles, J. S. (2002). Sex differences in motivation, self-concept, career aspiration, and career choice: Implications for cognitive development. In A. V. McGillicuddy-De Lisi & R. De Lisi (Eds.), Biology, society, and behavior: The development of sex differences in cognition (pp. 93–124). Greenwich, CT: Ablex.

    Google Scholar 

  • Willms, J. D. (2002). Ten hypotheses about socioeconomic gradients and community differences in children’s developmental outcomes. Montreal, Quebec: Statistics Canada.

    Google Scholar 

  • Wittwer, J., & Senkbeil, M. (2008). Is students’ computer use at home related to their mathematical performance at school? Computers & Education, 50, 1558–1571. https://doi.org/10.1016/j.compedu.2007.03.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Meggiolaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meggiolaro, S. Information and communication technologies use, gender and mathematics achievement: evidence from Italy. Soc Psychol Educ 21, 497–516 (2018). https://doi.org/10.1007/s11218-017-9425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11218-017-9425-7

Keywords

Navigation