Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Order Types of Convex Bodies

  • Published:
Order Aims and scope Submit manuscript

Abstract

We prove a Hadwiger transversal-type result, characterizing convex position on a family of non-crossing convex bodies in the plane. This theorem suggests a definition for the order type of a family of convex bodies, generalizing the usual definition of order type for point sets. This order type turns out to be an oriented matroid. We also give new upper bounds on the Erdős–Szekeres theorem in the context of convex bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisztriczky, T., Fejes, T.G.: A generalization of the Erdős–Szekeres convex n-gon theorem. J. Reine Angew. Math. 395, 167–170 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Bjorner, A., Sturmfels, B., Las Vergnas, M., White, N., Ziegler, G.: Oriented Matroids. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Ekchoff, J.A.: Gallai-type transversal problem in the plane. Discrete Comput. Geom. 9, 203–214 (1993)

    Article  MathSciNet  Google Scholar 

  4. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 464–470 (1935)

    Google Scholar 

  5. Grunbaum, B.: In: Kaibel, V., Klee, V., Ziegler, G.M. (eds.) Convex Polytopes, 2nd edn. Springer, New York (2003). ISBN 0-387-00424-6

    Google Scholar 

  6. Matusek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    Google Scholar 

  7. Mnev, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties (pp. 527–543). In: Viro, O.Y. (ed.) Topology and Geometry: Rohlin Seminar. Lecture Notes in Mathematics, p. 1346. Springer, Berlin (1988)

    Google Scholar 

  8. Pach, J., Tóth, G.: A generalization of the Erdős–Szekeres theorems to disjoint convex sets. Discrete Comput. Geom. 19, 437–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pach, J., Tóth, G.: Erdős–Szekeres type theorems for segments and non-crossing convex sets. Geom. Dedic. 81, 1–12 (2000)

    Article  MATH  Google Scholar 

  10. Pach, J., Tóth, G.: Families of Convex Sets not Representable by Points Indian Statistical Institute Platinum Jubilee Commemorative Volume—Architecture and Algorithms, pp. 43–53. World Scientific, Singapore (2009)

    Google Scholar 

  11. Suk, A.: On the order type of system of segments in the plane. Order 27, 63–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Toth, G., Valtr, P.: A note on the Erdős–Szekeres theorem. Discrtete Comp. Geom. 19, 457–459 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Hubard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubard, A., Montejano, L., Mora, E. et al. Order Types of Convex Bodies. Order 28, 121–130 (2011). https://doi.org/10.1007/s11083-010-9156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9156-2

Keywords

Navigation