Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Order Types of Systems of Segments in the Plane

  • Published:
Order Aims and scope Submit manuscript

Abstract

Let r(n) denote the largest integer such that every family \(\mathcal{C}\) of n pairwise disjoint segments in the plane in general position has r(n) members whose order type can be represented by points. Pach and Tóth gave a construction that shows r(n) < n log8/log9 (Pach and Tóth 2009). They also stated that one can apply the Erdős–Szekeres theorem for convex sets in Pach and Tóth (Discrete Comput Geom 19:437–445, 1998) to obtain r(n) > log16 n. In this note, we will show that r(n) > cn 1/4 for some absolute constant c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, A., Kalai, G.: Bounding the piercing number. Discrete Comput. Geom. 13, 245–256 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bisztriczky, T., Fejes Tóth, G.: A generalization of the Erdős–Szekeres convex n-gon theorem. J. Reine Angew. Math. 395, 167–170 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Bisztriczky, T., Fejes Tóth, G.: Convexly independent sets. Combinatorica 10, 195–202 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eckhoff, J.: Helly, Radon, and Carathéodory type theorems. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 389–448. North-Holland, Amsterdam (1993)

    Google Scholar 

  5. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    Google Scholar 

  6. Goodman, J. E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12, 484–507 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jber. Deutsch. Math. Verein. 32, 175–176 (1923)

    MATH  Google Scholar 

  8. Katchalski, M., Liu, A.: A problem of geometry in R n. Proc. Am. Math. Soc. 75, 284–288 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Matousek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    MATH  Google Scholar 

  10. Pach, J., Tóth, G.: A generalization of the Erdős–Szekeres theorem to disjoint convex sets. Discrete Comput. Geom. 19, 437–445 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pach, J., Tóth, G.: Families of convex sets not representable by points. Indian Statistical Institute Platinum Jubilee Commemorative Volume—Architecture and Algorithms, pp. 43–53. World Scientific, Singapore (2009)

    Google Scholar 

  12. Spencer, J.: Turán’s theorem for k-graphs. Discrete Math. 2, 183–186 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wenger, R.: Progress in geometric transversal theory. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, Contemp. Math., vol. 223, pp. 375–393. Amer. Math. Soc., Providence (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Suk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suk, A. On Order Types of Systems of Segments in the Plane. Order 27, 63–68 (2010). https://doi.org/10.1007/s11083-010-9138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9138-4

Keywords

Navigation