Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Growth and remodeling in highly stressed solid tumors

  • Mechanics of Extreme Materials
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Growing biological media develop residual stresses to make compatible elastic and inelastic growth-induced deformations, which in turn remodel the tissue properties modifying the actual elastic moduli and transforming an initially isotropic and homogeneous material into a spatially inhomogeneous and anisotropic one. This process is crucial in solid tumor growth mechanobiology, the residual stresses directly influencing tumor aggressiveness, nutrients walkway, necrosis and angiogenesis. With this in mind, we here analyze the problem of a hyperelastic sphere undergoing finite heterogeneous growth, in cases of different boundary conditions and spherical symmetry. By following an analytical approach, we obtain the explicit expression of the tangent elasticity tensor at any point of the material body as a function of the prescribed growth, by involving a small-on-large procedure and exploiting exact solutions for layered media. The results allowed to gain several new insights into how growth-guided mechanical stresses and remodeling processes can influence the solid tumor development. In particular, we highlight that—under hypotheses consistent with mechanical and physiological conditions—auxetic (negative Poisson ratio) transformations of the elastic response of selected growing mass districts could occur and contribute to explain some not yet completely understood phenomena associated to solid tumors. The general approach proposed in the present work could be also helpfully employed to conceive composite materials where ad hoc pre-stress distributions can be designed to obtain auxetic or other selected mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alexander NR, Branch KM, Parekh A, Clark ES, Iwueke IC, Guelcher SA, Weaver AM (2008) Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 18(17):1295–1299

    Article  Google Scholar 

  2. Araujo RP, McElwain DLS (2005) The nature of the stresses induced during tissue growth. Appl Math Lett 18(10):1081–1088. https://doi.org/10.1016/j.aml.2004.09.019

    Article  MathSciNet  MATH  Google Scholar 

  3. Baek S, Gleason R, Rajagopal K, Humphrey J (2007) Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput Methods Appl Mech Eng 196(31–32):3070–3078. https://doi.org/10.1016/j.cma.2006.06.018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52(18):5110–5114

    Google Scholar 

  5. Brannon R (1998) Caveats concerning conjugate stress and strain measures for frame indifferent anisotropic elasticity. Acta Mech 129(1–2):107–116

    Article  MathSciNet  Google Scholar 

  6. Carotenuto A, Cutolo A, Petrillo A, Fusco R, Arra C, Sansone M, Larobina D, Cardoso L, Fraldi M (2018) Growth and in vivo stresses traced through tumor mechanics enriched with predator-prey cells dynamics. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2018.06.011

    Article  Google Scholar 

  7. Ciarletta P, Destrade M, Gower AL (2016) On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter. Sci Rep 6(1), https://doi.org/10.1038/srep24390

  8. Cowin SC (2006) On the modeling of growth and adaptation. In: Mechanics of biological tissue, Springer, pp 29–46, https://doi.org/10.1007/3-540-31184-x_3

  9. Cowin SC (2010) Continuum kinematical modeling of mass increasing biological growth. Int J Eng Sci 48(11):1137–1145. https://doi.org/10.1016/j.ijengsci.2010.06.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowin SC, Doty SB (2007) Tissue mechanics. Springer, Berlin

    Book  Google Scholar 

  11. Fraldi M, Carotenuto AR (2018) Cells competition in tumor growth poroelasticity. J Mech Phys Solids 112:345–367

    Article  ADS  MathSciNet  Google Scholar 

  12. Fraldi M, Nunziante L, Carannante F (2007) Axis-symmetrical solutions forn-plies functionally graded material cylinders under strain no-decaying conditions. Mech Adv Mater Struct 14(3):151–174. https://doi.org/10.1080/15376490600719220

    Article  Google Scholar 

  13. Fraldi M, Carannante F, Nunziante L (2013) Analytical solutions for n-phase functionally graded material cylinders under de saint venant load conditions: homogenization and effects of poisson ratios on the overall stiffness. Compos Part B Eng 45(1):1310–1324. https://doi.org/10.1016/j.compositesb.2012.09.016

    Article  Google Scholar 

  14. Fraldi M, Cugno A, Deseri L, Dayal K, Pugno NM (2015) A frequency-based hypothesis for mechanically targeting and selectively attacking cancer cells. J R Soc Interface 12(111):20150656. https://doi.org/10.1098/rsif.2015.0656

    Article  Google Scholar 

  15. Fung Y (1981) Biomechanics: mechanical properties of living tissues. In: Fung YC (ed) Biomechanics. Springer, Berlin

    Chapter  Google Scholar 

  16. Gu Z, Liu F, Tonkova EA, Lee SY, Tschumperlin DJ, Brenner MB (2014) Soft matrix is a natural stimulator for cellular invasiveness. Mol Biol Cell 25(4):457–469

    Article  Google Scholar 

  17. Hoger A (1986) On the determination of residual stress in an elastic body. J Elast 16(3):303–324. https://doi.org/10.1007/bf00040818

    Article  MathSciNet  MATH  Google Scholar 

  18. Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res 67(6):2729–2735. https://doi.org/10.1158/0008-5472.CAN-06-4102

    Article  Google Scholar 

  19. Javili A, Steinmann P, Kuhl E (2014) A novel strategy to identify the critical conditions for growth-induced instabilities. J Mech Behav Biomed Mater 29:20–32. https://doi.org/10.1016/j.jmbbm.2013.08.017

    Article  Google Scholar 

  20. Ji W, Waas AM, Bazant ZP (2013) On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J Appl Mech 80(4):041024

    Article  Google Scholar 

  21. Katira P, Bonnecaze RT, Zaman MH (2013) Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front Oncol 3:145

    Article  Google Scholar 

  22. Kintzel O (2006) Fourth-order tensors-tensor differentiation with applications to continuum mechanics. part ii: tensor analysis on manifolds. ZAMM 86(4):312–334. https://doi.org/10.1002/zamm.200410243

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kintzel O, Başar Y (2006) Fourth-order tensors–tensor differentiation with applications to continuum mechanics. part i: Classical tensor analysis. ZAMM 86(4):291–311. https://doi.org/10.1002/zamm.200410242

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kuhl E (2014) Growing matter: a review of growth in living systems. J Mech Behav Biomed Mater 29:529–543. https://doi.org/10.1016/j.jmbbm.2013.10.009

    Article  Google Scholar 

  25. Lubarda V (1994) An analysis of large-strain damage elastoplasticity. Int J Solids Struct 31(21):2951–2964. https://doi.org/10.1016/0020-7683(94)90062-0

    Article  MATH  Google Scholar 

  26. Lubarda VA, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids Struct 39(18):4627–4664. https://doi.org/10.1016/S0020-7683(02)00352-9

    Article  MATH  Google Scholar 

  27. Munson JM, Shieh AC (2014) Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res 6:317

    Article  Google Scholar 

  28. Nappi F, Carotenuto AR, Vito DD, Spadaccio C, Acar C, Fraldi M (2015) Stress-shielding, growth and remodeling of pulmonary artery reinforced with copolymer scaffold and transposed into aortic position. Biomechanics and Modeling in Mechanobiology. https://doi.org/10.1007/s10237-015-0749-y

    Article  Google Scholar 

  29. Nemat-Nasser S, Hori M (2013) Micromechanics: overall properties of heterogeneous materials, vol 37. Elsevier, Amsterdam

    MATH  Google Scholar 

  30. Nguyen AV, Nyberg KD, Scott MB, Welsh AM, Nguyen AH, Wu N, Hohlbauch SV, Geisse NA, Gibb EA, Robertson AG et al (2016) Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol 8(12):1232–1245

    Article  Google Scholar 

  31. Paduch R (2016) The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cellular Oncol 39(5):397–410

    Article  Google Scholar 

  32. Piero GD (1979) Some properties of the set of fourth-order tensors, with application to elasticity. J Elast 9(3):245–261. https://doi.org/10.1007/bf00041097

    Article  MathSciNet  MATH  Google Scholar 

  33. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467. https://doi.org/10.1016/0021-9290(94)90021-3

    Article  Google Scholar 

  34. Sciumé G, Shelton S, Gand Gray CT W, Miller Hussain F, Ferrari M, Decuzzi P, Schrefler BA (2013) A multiphase model for three-dimensional tumor growth. New J Phys 15: https://doi.org/10.1088/1367-2630/15/1/015005

    Article  ADS  Google Scholar 

  35. Shukla V, Higuita-Castro N, Nana-Sinkam P, Ghadiali S (2016) Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition. J Biomed Mater Res Part A 104(5):1182–1193

    Article  Google Scholar 

  36. Simo J, Taylor RL, Pister K (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1–3):177–208

    Article  ADS  MathSciNet  Google Scholar 

  37. Skalak R, Zargaryan S, Jain RK, Netti PA, Hoger A (1996) Compatibility and the genesis of residual stress by volumetric growth. J Math Biol 34(8):889–914. https://doi.org/10.1007/bf01834825

    Article  MATH  Google Scholar 

  38. Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, Smith BL, Ferrone CR, Hornicek FJ, Boucher Y, Munn LL, Jain RK (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci 109(38):15101–15108. https://doi.org/10.1073/pnas.1213353109

    Article  ADS  Google Scholar 

  39. Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK (2013) Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73(13):3833–3841. https://doi.org/10.1158/0008-5472.can-12-4521

    Article  Google Scholar 

  40. Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, Blackman BR, Tschumperlin DJ, Parsons JT (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS ONE 5(9):e12905. https://doi.org/10.1371/journal.pone.0012905

    Article  ADS  Google Scholar 

  41. Truesdell C, Noll W (1965) The non-linear field theories of mechanics. In: The non-linear field theories of mechanics, Springer, Berlin, pp 1–541, https://doi.org/10.1007/978-3-642-46015-9_1

    Chapter  Google Scholar 

  42. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL (2011) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci 109(3):911–916. https://doi.org/10.1073/pnas.1118910109

    Article  ADS  Google Scholar 

  43. Vandiver R, Goriely A (2009) Differential growth and residual stress in cylindrical elastic structures. Philos Trans R Soc A Math Phys Eng Sci 367(1902):3607–3630. https://doi.org/10.1098/rsta.2009.0114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206. https://doi.org/10.1016/j.semradonc.2004.04.008

    Article  Google Scholar 

  45. Voutouri C, Mpekris F, Papageorgis P, Odysseos AD, Stylianopoulos T (2014) Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors. PLoS ONE 9(8):e104717. https://doi.org/10.1371/journal.pone.0104717

    Article  ADS  Google Scholar 

  46. Wolfram Research I (2015) Mathematica. Wolfram Research, Inc, Champaign

    Google Scholar 

  47. Zurlo G, Truskinovsky L (2017) Printing non-euclidean solids. Phys Rev Lett 119(4):048001

    Article  ADS  Google Scholar 

Download references

Funding

This study was funded by the Italian Ministry of Education, Universities and Research through the Grants: “Integrated mechanobiology approaches for a precise medicine in cancer treatment” (Award Number: PRIN-20177TTP3S), “Micromechanics and robotics for diagnosis and therapy in prostate cancer” (Award Number: PON-ARS01_01384), “CIRO - Campania Imaging Infrastructure for Research in Oncology” (CUP B61G17000190007, SURF 17063BP000000002) and SATIN - “Therapeutic Strategies against Resistant Cancer” (CUP B61C17000070007, SURF 17061BP000000002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fraldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carotenuto, A.R., Cutolo, A., Palumbo, S. et al. Growth and remodeling in highly stressed solid tumors. Meccanica 54, 1941–1957 (2019). https://doi.org/10.1007/s11012-019-01057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01057-5

Keywords

Navigation