Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Some properties of the set of fourth-order tensors, with application to elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper the algebraic structure of the set of fourth-order tensors is examined. Special emphasis is given to the two different tensor products which can be defined over this set, when it is regarded as a vector space and as the set of all linear transformations over a vector space, respectively.

The new formalism introduced here makes it possible to write in a simple form the restrictions imposed on the elasticity tensors, in finite elasticity, by balance of angular momentum and by the principle of material frame-indifference.

A reassessment of the various elasticity tensors used in the literature is presented, and some classical results are re-stated in a simple and natural way.

Riassunto

Questo articolo tratta della struttura algebrica dell' insieme dei tensori del quarto ordine. Particolare rilievo è dato alla definizione di prodotto tensoriale tra tensori del secondo ordine, che è diversa a seconda che essi siano considerati transformazioni lineari su di uno spazio vettoriale, oppure essi stessi elementi di uno spazio vettoriale.

Il nuovo formalismo introdotto rende semplice la determinazione delle restrizioni imposte ai tensori elastici, in Elasticità finita, dal bilancio della quantità di moto e dal principio di indifferenza materiale.

Diventa anche possibile un riordinamento dei tensori elastici piò frequentemente usati nella letteratura. Ciò permette di ritrovare, in modo semplice e naturale, alcuni risultati classici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gurtin, M. E.,The Linear Theory of Elasticity. Handbuch der Physik, Vol. VIa/2, Berlin, Heidelberg, New York: Springer 1972.

    Google Scholar 

  2. Noll, W., A new mathematical theory of simple materials.Arch. Rational Mech. Anal. 48 (1972) 1–50.

    Article  Google Scholar 

  3. Halmos, P. R.,Finite-dimensional vector spaces, New York: Van Nostrand 1958.

    Google Scholar 

  4. Noll, W., Lectures on the foundations of Continuum Mechanics and Thermodynamics.Arch. rational Mech. Anal. 52 (1973) 62–92.

    Article  Google Scholar 

  5. Truesdell, C., & W. Noll,The non-linear field theories of Mechanics. Handbuch der Physik, Vol. III/3. Berlin, Heidelberg, New York: Springer 1965.

    Google Scholar 

  6. Coddington, E. A., & N. Levinson,Theory of ordinary differential equations. New York: Mc. Graw-Hill 1955.

    Google Scholar 

  7. Noll, W., On the continuity of the solid and fluid states.J. Rational Mech. Anal. 4 (1955) 3–81.

    Google Scholar 

  8. Chadwick, P., & R. W. Ogden, “On the definition of elastic moduli”.Arch. Rational Mech. Anal. 44 (1971) 41–53.

    Google Scholar 

  9. Gurtin, M. E.,An introduction to classical Continuum Mechanics (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Guido Stampacchia,in mortem

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Piero, G. Some properties of the set of fourth-order tensors, with application to elasticity. J Elasticity 9, 245–261 (1979). https://doi.org/10.1007/BF00041097

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041097

Keywords

Navigation