Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a deterministic global optimization approach, whose novel contributions are rooted in the edge-concave and piecewise-linear underestimators, to address nonconvex mixed-integer quadratically-constrained quadratic programs (MIQCQP) to \({\epsilon}\) -global optimality. The facets of low-dimensional (n ≤ 3) edge-concave aggregations dominating the termwise relaxation of MIQCQP are introduced at every node of a branch-and-bound tree. Concave multivariable terms and sparsely distributed bilinear terms that do not participate in connected edge-concave aggregations are addressed through piecewise-linear relaxations. Extensive computational studies are presented for point packing problems, standard and generalized pooling problems, and examples from GLOBALLib (Meeraus, Globallib. http://www.gamsworld.org/global/globallib.htm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adhya N., Tawarmalani M., Sahinidis N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1965–1972 (1999)

    Article  Google Scholar 

  3. Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice differentiable NLPs-II. Implementation and computional results. Comput. Chem. Eng. 22, 1159–1179 (1998)

    Article  Google Scholar 

  4. Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB, for general twice differentiable NLPs-I. Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998)

    Article  Google Scholar 

  5. Aggarwal A., Floudas C.A.: Synthesis of general distillation sequences—nonsharp separations. Comput. Chem. Eng. 14(6), 631–653 (1990)

    Article  Google Scholar 

  6. Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D.: LAPACK Users’ Guide. 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  Google Scholar 

  8. Androulakis I.P., Maranas C.D., Floudas C.A.: αBB: a global optimization method for general constrained nonconvex problems. J. Global Optim. 7, 337–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Anstreicher K.M.: Semidefinite programming versus the reformulation–linearization technique for nonconvex quadratically constrained quadratic programming. J. Global Optim. 43(2–3), 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Anstreicher K.M., Burer S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124(1–2), 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Audet C., Brimberg J., Hansen P., Le Digabel S., Mladenovic N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)

    Article  MATH  Google Scholar 

  12. Audet C., Hansen P., Jaumard B., Savard G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Bagajewicz M.: A review of recent design procedures for water networks in refineries and process plants. Comput. Chem. Eng. 24, 2093–2113 (2000)

    Article  Google Scholar 

  14. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. doi:10.1007/s10107-011-0462-2

  15. Bao X., Sahinidis N.V., Tawarmalani M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Belotti P., Lee J., Liberti L., Margot F., Wächter A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ben-Tal A., Eiger G., Gershovitz V.: Global minimization by reducing the duality gap. Math. Program. 63, 193–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bergamini M.L., Grossmann I., Scenna N., Aguirre P.: An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput. Chem. Eng. 32(3), 477–493 (2008)

    Article  Google Scholar 

  19. Brimberg J., Hansen P., Mladenovic N.: A note on reduction of quadratic and bilinear programs with equality constraints. J. Global Optim. 22(1–4), 39–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brooke, A., Kendrick, D., Meeraus, A.: General algebraic modeling language (GAMS) 2011, version 23.6. http://www.gams.com/

  21. Burer S., Letchford A.N.: On nonconvex quadratic programming with box constraints. SIAM J. Optim. 20(2), 1073–1089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Burer S., Vandenbussche D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cambini S., Sodini C.: Decomposition methods for solving nonconvex quadratic programs via branch and bound. J. Global Optim. 33, 313–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ciric A.R., Floudas C.A.: A retrofit approach for heat exchanger networks. Comput. Chem. Eng. 13(6), 703–715 (1989)

    Article  Google Scholar 

  25. Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Faria D.C., Bagajewicz M.J.: On the appropriate modeling of process plant water systems. AIChE J. 56(3), 668–689 (2010)

    Google Scholar 

  27. Floudas C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  28. Floudas C.A., Aggarwal A.: A decomposition strategy for global optimum search in the pooling problem. ORSA J. Comput. 2, 225–235 (1990)

    Article  MATH  Google Scholar 

  29. Floudas C.A., Aggarwal A., Ciric A.R.: Global optimum search for nonconvex NLP and MINLP problems. Comput. Chem. Eng. 13(10), 1117–1132 (1989)

    Article  Google Scholar 

  30. Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)

    Article  Google Scholar 

  31. Floudas C.A., Anastasiadis S.H.: Synthesis of distillation sequences with several multicomponent feed and product streams. Chem. Eng. Sci. 43(9), 2407–2419 (1988)

    Article  Google Scholar 

  32. Floudas C.A., Gounaris C.E.: A review of recent advances in global optimization. J. Global Optim. 45(1), 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Floudas C.A., Grossmann I.E.: Synthesis of flexible heat-exchanger networks with uncertain flowrates and temperatures. Comput. Chem. Eng. 11(4), 319–336 (1987)

    Article  Google Scholar 

  34. Floudas C.A., Pardalos P.M.: State-of-the-art in global optimization—computational methods and applications—preface. J. Global Optim. 7(2), 113 (1995)

    Article  MathSciNet  Google Scholar 

  35. Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gms Z.H., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  36. Floudas C.A., Paules G.E.: A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences. Comput. Chem. Eng. 12(6), 531–546 (1988)

    Article  Google Scholar 

  37. Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)

    Article  Google Scholar 

  38. Floudas C.A., Visweswaran V.: Primal-relaxed dual global optimization approach. J. Optim. Theory Appl. 78(2), 187–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gill, P.E., Murray, W., Saunders, M.A. SNOPT. 1999, version 5.3. http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm

  40. Gounaris C.E., Misener R., Floudas C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)

    Article  Google Scholar 

  41. Hansen P., Jaumard B.: Reduction of indefinite quadratic programs to bilinear programs. J. Global Optim. 2, 41–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hasan M.M.F., Karimi I.A.: Piecewise linear relaxation of bilinear programs using bivariate partitioning. AIChE J. 56(7), 1880–1893 (2010)

    Article  Google Scholar 

  43. ILOG. CPLEX. 2009, version 11.1 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer

  44. zowski J.: Review of water network design methods with literature annotations. Ind. Eng. Chem. Res. 49(10), 4475–4516 (2010)

    Article  Google Scholar 

  45. Karuppiah R., Grossmann I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)

    Article  Google Scholar 

  46. Keha A.B., de Farias I.R., Nemhauser G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32(1), 44–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kokossis A.C., Floudas C.A.: Synthesis of isothermal reactor–separator–recycle systems. Chem. Eng. Sci. 46(5–6), 1361–1383 (1991)

    Google Scholar 

  48. Kokossis A.C., Floudas C.A.: Optimization of complex reactor networks–II. nonisothermal operation. Chem. Eng. Sci. 49(7), 1037–1051 (1994)

    Article  Google Scholar 

  49. Liberti L., Pantelides C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Global Optim. 36(2), 161–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lin X., Floudas C.A.: Design, synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation. Comput. Chem. Eng. 25(4–6), 665–674 (2001)

    Article  Google Scholar 

  51. Linderoth J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lougee-Heimer R.: The common optimization interface for operations research: promoting open-source software in the operations research community. IBM J. Res. Dev. 47(1), 57–66 (2003)

    Article  Google Scholar 

  53. Maranas C.D., Floudas C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7(2), 143–182 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. McCormick G.P.: Computability of global solutions to factorable nonconvex programs: part 1-convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  55. Meeraus, A.: Globallib. http://www.gamsworld.org/global/globallib.htm

  56. Meyer C.A., Floudas C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds) Frontiers in Global Optimization, pp. 327–352. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  57. Meyer C.A., Floudas C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Global Optim. 29(2), 125–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Meyer C.A., Floudas C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Meyer C.A., Floudas C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)

    Article  Google Scholar 

  60. Misener R., Floudas C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Misener R., Floudas C.A.: Global optimization of large-scale pooling problems: quadratically constrained MINLP models. Ind. Eng. Chem. Res. 49(11), 5424–5438 (2010)

    Article  Google Scholar 

  62. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations, 2011. http://www.optimization-online.org/DB_HTML/2011/11/3240.html

  63. Misener R., Gounaris C.E., Floudas C.A.: Global optimization of gas lifting operations: a comparative study of piecewise linear formulations. Ind. Eng. Chem. Res. 48(13), 6098–6104 (2009)

    Article  Google Scholar 

  64. Misener R., Gounaris C.E., Floudas C.A.: Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emissions constraints. Comput. Chem. Eng. 34(9), 1432–1456 (2010)

    Article  Google Scholar 

  65. Misener R., Thompson J.P., Floudas C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)

    Article  Google Scholar 

  66. Pardalos P.M.: Global optimization algorithms for linearly constrained indefinite quadratic problems. Comput. Math. Appl. 21(6–7), 87–97 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  67. Pham V., Laird C., El-Halwagi M.: Convex hull discretization approach to the global optimization of pooling problems. Ind. Eng. Chem. Res. 48, 1973–1979 (2009)

    Article  Google Scholar 

  68. Quesada I., Grossmann I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19, 1219–1242 (1995)

    Article  Google Scholar 

  69. Rikun A.D.: A convex envelope formula for multilinear functions. J. Global Optim. 10, 425–437 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rosen J.B., Pardalos P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34(2), 163–174 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ruiz J.P., Grossmann I.E.: Exploiting vector space properties to strengthen the relaxation of bilinear programs arising in the global optimization of process networks. Optim. Lett. 5, 1–11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. Saif Y., Elkamel A., Pritzker M.: Global optimization of reverse osmosis network for wastewater treatment and minimization. Ind. Eng. Chem. Res. 47(9), 3060–3070 (2008)

    Article  Google Scholar 

  73. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. doi:0.1007/s10107-010-0340-3

  74. Saxena A., Bonami P., Lee J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124(1–2), 383–411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  75. Sherali H.D.: On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions. Oper. Res. Lett. 28(4), 155–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sherali H.D., Adams W.P.: A Reformulation–Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  77. Sherali H.D., Alameddine A.: A new reformulation–linearization technique for bilinear programming problems. J. Global Optim. 2, 379–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sherali H.D., Tuncbilek C.H.: A reformulation–convexification approach for solving nonconvex quadratic-programming problems. J. Global Optim. 7(1), 1–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  79. Sherali H.D., Tuncbilek C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  80. Tardella F.: On a class of functions attaining their maximum at the vertices of a polyhedron. Discret. Appl. Math. 22, 191–195 (1988)

    Article  MathSciNet  Google Scholar 

  81. Tardella F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds) Frontiers in Global Optimization, pp. 563–573. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  82. Tardella F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  83. Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Applications, Software, and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  84. Vandenbussche D., Nemhauser G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102(3), 559–575 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  85. Vandenbussche D., Nemhauser G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102(3), 531–557 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  86. Vielma J.P., Ahmed S., Nemhauser G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  87. Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 2010. doi:10.1007/s10107-009-0295-4

  88. Vigerske, S.: COIN-OR/GAMSLinks, 2011. Trunk Revision 1026. https://projects.coin-or.org/GAMSlinks/

  89. Visweswaran V.: MINLP: applications in blending and pooling. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 2114–2121. Springer, New York (2009)

    Chapter  Google Scholar 

  90. Visweswaran V., Floudas C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: II. Application of theory and test problems. Comput. Chem. Eng. 14(12), 1419–1434 (1990)

    Article  Google Scholar 

  91. Visweswaran V., Floudas C.A.: New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints. J. Global Optim. 3, 439–462 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  92. Wicaksono D.S., Karimi I.A.: Piecewise MILP under-and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Additional information

The authors gratefully acknowledge support from the National Science Foundation (CBET–0827907).

R.M. is further thankful for her NSF Graduate Research Fellowship (DGE-0646086).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misener, R., Floudas, C.A. Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 136, 155–182 (2012). https://doi.org/10.1007/s10107-012-0555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0555-6

Mathematics Subject Classification

Navigation