Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs

  • Published:
Mathematical Programming Submit manuscript

Abstract.

We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to be second-order cone representable. The usefulness of these new relaxations is demonstrated both theoretically and computationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Khayyal, F.A.: Generalized bilinear programming, part I: Models, applications, and linear programming relaxation. European Journal on Operations Research 60, 306–314 (1992)

    Article  MATH  Google Scholar 

  2. Al-Khayyal, F.A., Falk., J.E.: Jointly constrained biconvex programming. Mathematics of Operations Research 8, 273–286 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Al-Khayyal, F.A., Larsen, C., Van Voorhis., T.: A relaxation method for nonconvex quadratically constrained programs. Journal of Global Optimization 6, 215–230 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Androulakis, I.P., Maranas, C.D., Floudas., C.A.: aBB : A global optimization method for general constrained nonconvex problems. Journal of Global Optimization 7, 337–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Audet, C., Hansen, P., Jaumard, B., Savard., G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programs. Mathematical Programming 87, 131–152 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Nemirovski., A.: On polyhedral approximations of the second-order cone. Mathematics of Operations Research 26, 193–205 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. The COCONUT benchmark: A benchmark for global optimization and constraint satisfaction, 2004. http://www.mat.univie.ac.at{/∼n}eum/glopt/coconut/benchmark.html.

  8. COIN-OR: Computational Infrastructure for Operations Research, 2004. http://www.coin-or.org.

  9. Conn, A.R., Gould, N.I.M., Toint. Ph.L.: LANCELOT: A Fortran Package for Large-scale Nonlinear Optimization (Release A). Springer–Verlag, 1992

  10. Dolan, E., Moré., J.: Benchmarking optimization software with performance profiles. Mathematical Programming 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Foster, I., Kesselman, C.: Computational grids. In: I. Foster, C. Kesselman (eds.), The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999, Chapter 2.

  12. Globallib, 2004. http://www.gamsworld.org/global/globallib.htm.

  13. Goux, J.-P., Kulkarni, S., Linderoth, J.T., Yoder., M.: Master-Worker : An enabling framework for master-worker applications on the computational grid. Cluster Computing 4, 63–70 (2001)

    Article  Google Scholar 

  14. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica. A Modeling Language for Global Optimization. MIT Press, Cambridge, MA, 1997

  15. Horst., R.: An algorithm for nonconvex programming problems. Mathematical Programming 10, 312–321 (1976)

    Article  MathSciNet  Google Scholar 

  16. Horst, R., Tuy, H.: Global Optimization. Springer-Verlag, New York, 1993

  17. Jansson., C.: Rigorous lower and upper bounds in linear programming. SIAM Journal on Optimization 14, 914–935 (2004)

    Article  Google Scholar 

  18. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, 1996

  19. Kim, S., Kojima., M.: Second order cone programming relaxation methods of nonconvex quadratic optimization problems. Optimization Methods and Software 15, 201–224 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Lebbeh, Y., Rueher, M., Michel, C.: A global filtering algorithm for handling systes of quadratic equations and inequations. In: P. van Hentenryck (ed.), Lecture Notes in Computer Science: Principles and Practice of Constraint Programming: CP 2002, vol. 2470, Springer, 2002, pp. 109–123

  21. Linderoth, J.T.: Applying integer programming techniques to global optimization problems, 2003. Presentation at INFORMS National Meeting.

  22. McCormick., G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Mathematical Programming 10, 147–175 (1976)

    Article  MathSciNet  Google Scholar 

  23. Mosek ApS, 2004. http://www.mosek.com.

  24. Raber., U.: A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. Journal of Global Optimization 13, 417–432 (1998)

    Article  Google Scholar 

  25. Raber, U.: Nonconvex All-Quadratic Global Optimization Problems: Solution Methods, Application and Related Topics. PhD thesis, Universität Trier, Germany, 1999

  26. Rote., G.: The convergence of the sandwich algorithm for approximating convex functions. Computing 48, 337–361 (1992)

    MathSciNet  Google Scholar 

  27. Ryoo, H.S., Sahinidis., N.V.: A branch-and-reduce approach to global optimization. Journal of Global Optimization 8, 107–139 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sahinidis., N.V.: BARON: A general purpose global optimization software package. Journal of Global Optimization 8, 201–205 (1996)

    Article  Google Scholar 

  29. Sherali, H.D., Alameddine., A.R.: An explicit characterization of the convex envelope of a bivariate function over special polytopes. Annals of Operations Research, Computational Methods in Global Optimization, 197–210 (1990)

  30. Sherali, H.D., Alameddine., A.R.: A new reformulation linearization technique for bilinear programming problems. Journal of Global Optimization 2, 379–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sturm., J.F.: Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11 (12), 625–653 (1999)

    Google Scholar 

  32. Tawarmalani, M., Sahinidis., N.V.: Semidefinite relaxations of fractional programs via novel convexifications techniques. Journal of Global Optimization 20, 137–158 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Boston MA, 2002

  34. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed integer nonlinear programs: A theoretical and computational study. Mathematical Programming, 2004, to appear

  35. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Research report, IBM T. J. Watson Research Center, Yorktown, USA, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Linderoth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linderoth, J. A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005). https://doi.org/10.1007/s10107-005-0582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0582-7

Keywords

Navigation