Abstract
We present some general results on properties of the bihamiltonian cohomologies associated to bihamiltonian structures of hydrodynamic type, and compute the third cohomology for the bihamiltonian structure of the dispersionless KdV hierarchy. The result of the computation enables us to prove the existence of bihamiltonian deformations of the dispersionless KdV hierarchy starting from any of its infinitesimal deformations.
Similar content being viewed by others
References
Arsie, A., Lorenzoni, P.: On bi-Hamiltonian deformations of exact pencils of hydrodynamic type. J. Phys. A 44(22), 225205, 31 pp (2011)
Barakat A.: On the moduli space of deformations of bihamiltonian hierarchies of hydrodynamic type. Adv. Math. 219(2), 604–632 (2008)
Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
Camassa R., Holm D.D., Hyman J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)
Degiovanni L., Magri F., Sciacca V.: On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. 253, 1–24 (2005)
De Sole A., Kac V.: The variational Poisson cohomology. Japan J. Math 8, 1–145 (2013)
De Sole A., Kac V.: Essential variational Poisson cohomology. Commun. Math. Phys. 313(3), 837–864 (2012)
Dijkgraaf, R.: Intersection theory, integrable hierarchies and topological field theory. New symmetry principles in quantum field theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys. 295, New York: Plenum, 1992, pp.95–158
Drinfeld, V., Sokolov, V.: Lie algebras and equations of Korteweg-de Vries type, J. Math. Sci. 30(2), 1975–2036 (1985); translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya) 24, 81–180 (1984)
Dubrovin, B.: Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Berlin: Springer, 1996, pp. 120–348
Dubrovin B., Zhang Y.: Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Commun. Math. Phys. 198, 311–361 (1998)
Dubrovin B., Liu S.-Q., Zhang Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian perturbations. Comm. Pure Appl. Math. 59(4), 559–615 (2006)
Dubrovin B., Novikov S.: Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method. Dokl. Akad. Nauk SSSR 270(4), 781–785 (1983)
Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. http://arxiv.org/abs/math/0108160v1 [math.DG], 2001
Dubrovin, B., Liu, S.-Q., Zhang, Y.: Bihamiltonian Cohomologies and Integrable Hierarchies II: The General Case. In preparation
Eguchi T., Yamada Y., Yang S.-K.: On the Genus Expansion in the Topological String Theory. Rev. Math. Phys. 7(3), 279–309 (1995)
Fokas A.S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)
Fuchssteiner B.: Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation. Physica D 95, 229–243 (1996)
Fuchssteiner B., Fokas A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981/82)
Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)
Givental, A., Milanov, T.: Simple singularities and integrable hierarchies. The breadth of symplectic and Poisson geometry. Progr. Math. 232, Boston, MA: Birkhäuser Boston, 2005, pp. 173–201
Kersten P., Krasil’shchik I., Verbovetsky A.: Hamiltonian operators and ℓ*-coverings. J. Geom. Phys. 50, 273–302 (2004)
Kersten, P., Krasil’shchik, I., Verbovetsky, A., Vitolo, R.: Hamiltonian structures for general PDEs. Differential equations: geometry, symmetries and integrability, Abel Symp. 5, Berlin: Springer, 2009, pp. 187–198
Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)
Lichnerowicz A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12, 253–300 (1977)
Liu S.-Q., Zhang Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54(4), 427–453 (2005)
Liu S.-Q., Zhang Y.: On quasi-triviality and integrability of a class of scalar evolutionary PDEs. J. Geom. Phys. 57(1), 101–119 (2006)
Liu S.-Q., Wu C.-Z., Zhang Y.: On properties of Hamiltonian structures for a class of evolutionary PDEs. Lett. Math. Phys. 84(1), 47–63 (2008)
Liu S.-Q., Zhang Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227(1), 73–130 (2011)
Lorenzoni P.: Deformations of bi-Hamiltonian structures of hydrodynamic type. J. Geom. Phys. 44(2-3), 331–375 (2002)
Magri F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)
Manetti, M.: Differential graded Lie algebras and formal deformation theory. In: Algebraic geometry–Seattle 2005. Part 2, Proc. Sympos. Pure Math. 80, Part 2, Providence, RI:Amer. Math. Soc., 2009, pp. 785–810
Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in differential geometry (Cambridge, MA, 1990), Bethlehem,PA:Lehigh Univ., 1991, pp. 243–310
Xue T., Zhang Y.: Bihamiltonian systems of hydrodynamic type and reciprocal transformations. Lett. Math. Phys. 75(1), 79–92 (2006)
Zakharov V.E., Faddeev L.D.: Korteweg-de Vries equation is a completely integrable Hamiltonian system. Funkz. Anal. Priloz. 5, 18–27 (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Rights and permissions
About this article
Cite this article
Liu, SQ., Zhang, Y. Bihamiltonian Cohomologies and Integrable Hierarchies I: A Special Case. Commun. Math. Phys. 324, 897–935 (2013). https://doi.org/10.1007/s00220-013-1822-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-013-1822-y