Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bihamiltonian Cohomologies and Integrable Hierarchies I: A Special Case

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present some general results on properties of the bihamiltonian cohomologies associated to bihamiltonian structures of hydrodynamic type, and compute the third cohomology for the bihamiltonian structure of the dispersionless KdV hierarchy. The result of the computation enables us to prove the existence of bihamiltonian deformations of the dispersionless KdV hierarchy starting from any of its infinitesimal deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arsie, A., Lorenzoni, P.: On bi-Hamiltonian deformations of exact pencils of hydrodynamic type. J. Phys. A 44(22), 225205, 31 pp (2011)

    Google Scholar 

  2. Barakat A.: On the moduli space of deformations of bihamiltonian hierarchies of hydrodynamic type. Adv. Math. 219(2), 604–632 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Camassa R., Holm D.D., Hyman J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  5. Degiovanni L., Magri F., Sciacca V.: On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. 253, 1–24 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. De Sole A., Kac V.: The variational Poisson cohomology. Japan J. Math 8, 1–145 (2013)

    Article  MATH  Google Scholar 

  7. De Sole A., Kac V.: Essential variational Poisson cohomology. Commun. Math. Phys. 313(3), 837–864 (2012)

    Article  ADS  MATH  Google Scholar 

  8. Dijkgraaf, R.: Intersection theory, integrable hierarchies and topological field theory. New symmetry principles in quantum field theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys. 295, New York: Plenum, 1992, pp.95–158

  9. Drinfeld, V., Sokolov, V.: Lie algebras and equations of Korteweg-de Vries type, J. Math. Sci. 30(2), 1975–2036 (1985); translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya) 24, 81–180 (1984)

    Google Scholar 

  10. Dubrovin, B.: Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Berlin: Springer, 1996, pp. 120–348

  11. Dubrovin B., Zhang Y.: Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Commun. Math. Phys. 198, 311–361 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dubrovin B., Liu S.-Q., Zhang Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian perturbations. Comm. Pure Appl. Math. 59(4), 559–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dubrovin B., Novikov S.: Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method. Dokl. Akad. Nauk SSSR 270(4), 781–785 (1983)

    MathSciNet  ADS  Google Scholar 

  14. Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. http://arxiv.org/abs/math/0108160v1 [math.DG], 2001

  15. Dubrovin, B., Liu, S.-Q., Zhang, Y.: Bihamiltonian Cohomologies and Integrable Hierarchies II: The General Case. In preparation

  16. Eguchi T., Yamada Y., Yang S.-K.: On the Genus Expansion in the Topological String Theory. Rev. Math. Phys. 7(3), 279–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fokas A.S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Fuchssteiner B.: Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation. Physica D 95, 229–243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fuchssteiner B., Fokas A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981/82)

    Article  MathSciNet  ADS  Google Scholar 

  20. Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Givental, A., Milanov, T.: Simple singularities and integrable hierarchies. The breadth of symplectic and Poisson geometry. Progr. Math. 232, Boston, MA: Birkhäuser Boston, 2005, pp. 173–201

  22. Kersten P., Krasil’shchik I., Verbovetsky A.: Hamiltonian operators and *-coverings. J. Geom. Phys. 50, 273–302 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Kersten, P., Krasil’shchik, I., Verbovetsky, A., Vitolo, R.: Hamiltonian structures for general PDEs. Differential equations: geometry, symmetries and integrability, Abel Symp. 5, Berlin: Springer, 2009, pp. 187–198

  24. Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Lichnerowicz A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12, 253–300 (1977)

    MathSciNet  MATH  Google Scholar 

  26. Liu S.-Q., Zhang Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54(4), 427–453 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Liu S.-Q., Zhang Y.: On quasi-triviality and integrability of a class of scalar evolutionary PDEs. J. Geom. Phys. 57(1), 101–119 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Liu S.-Q., Wu C.-Z., Zhang Y.: On properties of Hamiltonian structures for a class of evolutionary PDEs. Lett. Math. Phys. 84(1), 47–63 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Liu S.-Q., Zhang Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227(1), 73–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lorenzoni P.: Deformations of bi-Hamiltonian structures of hydrodynamic type. J. Geom. Phys. 44(2-3), 331–375 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Magri F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Manetti, M.: Differential graded Lie algebras and formal deformation theory. In: Algebraic geometry–Seattle 2005. Part 2, Proc. Sympos. Pure Math. 80, Part 2, Providence, RI:Amer. Math. Soc., 2009, pp. 785–810

  33. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in differential geometry (Cambridge, MA, 1990), Bethlehem,PA:Lehigh Univ., 1991, pp. 243–310

  34. Xue T., Zhang Y.: Bihamiltonian systems of hydrodynamic type and reciprocal transformations. Lett. Math. Phys. 75(1), 79–92 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Zakharov V.E., Faddeev L.D.: Korteweg-de Vries equation is a completely integrable Hamiltonian system. Funkz. Anal. Priloz. 5, 18–27 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SQ., Zhang, Y. Bihamiltonian Cohomologies and Integrable Hierarchies I: A Special Case. Commun. Math. Phys. 324, 897–935 (2013). https://doi.org/10.1007/s00220-013-1822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1822-y

Keywords

Navigation