Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The variational Poisson cohomology

  • Original Articles
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

It is well known that the validity of the so called Lenard–Magri scheme of integrability of a bi-Hamiltonian PDE can be established if one has some precise information on the corresponding 1st variational Poisson cohomology for one of the two Hamiltonian operators. In the first part of the paper we explain how to introduce various cohomology complexes, including Lie superalgebra and Poisson cohomology complexes, and basic and reduced Lie conformal algebra and Poisson vertex algebra cohomology complexes, by making use of the corresponding universal Lie superalgebra or Lie conformal superalgebra. The most relevant are certain subcomplexes of the basic and reduced Poisson vertex algebra cohomology complexes, which we identify (non-canonically) with the generalized de Rham complex and the generalized variational complex. In the second part of the paper we compute the cohomology of the generalized de Rham complex, and, via a detailed study of the long exact sequence, we compute the cohomology of the generalized variational complex for any quasiconstant coefficient Hamiltonian operator with invertible leading coefficient. For the latter we use some differential linear algebra developed in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin, Geometric Algebra, Interscience Publishers, Inc., New York–London, 1957.

  2. Bakalov B., D’Andrea A., Kac V.G.: Theory of finite pseudoalgebras, Adv. Math 162, 1–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakalov B., Kac V.G., Voronov A.A.: Cohomology of conformal algebras, Comm. Math. Phys 200, 561–598 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barakat A., De Sole A., Kac V.G.: Poisson vertex algebras in the theory of Hamiltonian equations, Jpn. J. Math 4, 141–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Bourbaki, Eléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie. Second ed., Hermann, Paris, 1971.

  6. Cantarini N., Kac V.G.: Classification of linearly compact simple rigid superalgebras, Int. Math. Res. Not. IMRN 2010, 3341–3393 (2010)

    MathSciNet  MATH  Google Scholar 

  7. De Sole A., Hekmati P., Kac V.G.: Calculus structure on the Lie conformal algebra complex and the variational complex, J. Math. Phys 52, 053510 (2011)

    Article  MathSciNet  Google Scholar 

  8. De Sole A., Kac V.G.: Finite vs affine W-algebras, Jpn. J. Math 1, 137–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Sole A., Kac V.G.: Lie conformal algebra cohomology and the variational complex, Comm. Math. Phys 292, 667–719 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Sole A., Kac V.G., Wakimoto M.: On classification of Poisson vertex algebras, Transform. Groups 15, 883–907 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dieudonné J.: Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71, 27–45 (1943)

    MathSciNet  MATH  Google Scholar 

  12. I.Ya. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Sci. Theory Appl., John Wiley & Sons, 1993.

  13. Gardner C.S.: Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamiltonian system, J. Mathematical Phys 12, 1548–1551 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Korteweg–de Vries equation and generalizations. VI. Methods for exact solution, Comm. Pure Appl. Math 27, 97–133 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations, Duke Math. J 111, 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hufford G.: On the characteristic matrix of a matrix of differential operators, J. Differential Equations 1, 27–38 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Igonin, A. Verbovetsky and R. Vitolo, Variational multivectors and brackets in the geometry of jet spaces, In: Symmetry in Nonlinear Mathematical Physics. Part 1, 2, 3, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Natsīonal. Akad. Nauk Ukraïni, 2004, pp. 1335–1342.

  18. V.G. Kac, Vertex Algebras for Beginners. Second ed., Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1998.

  19. I.S. Krasil’shchik, Schouten bracket and canonical algebras, In: Global Analysis—Studies and Applications. III, Lecture Notes in Math., 1334, Springer-Verlag, 1988, pp. 79–110.

  20. B.A. Kupershmidt, Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms, In: Geometric Methods in Mathematical Physics, Lecture Notes in Math., 775, Springer-Verlag, 1980, pp. 162–218.

  21. Lax P.D.: Almost periodic solutions of the KdV equation. SIAM Rev. 18, 351–375 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Leray, Hyperbolic Differential Equations, The Institute for Advanced Study, Princeton, NJ, 1953.

  23. Lichnerowicz A.: Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12, 253–300 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Magri F.: A simple model of the integrable Hamiltonian equation, J. Math. Phys 19, 1156–1162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miyake M.: On the determinant of matrices of ordinary differential operators and an index theorem, Funkcial. Ekvac 26, 155–171 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Nijenhuis A., Richardson R.W. Jr.: Deformations of Lie algebra structures, J. Math. Mech 17, 89–105 (1967)

    MathSciNet  MATH  Google Scholar 

  27. P.J. Olver, Bi-Hamiltonian systems, In: Ordinary and Partial Differential Equations, Pitman Res. Notes in Math. Ser., 157, Longman Sci. Tech., Harlow, England, 1987, pp. 176–193.

  28. P.J. Olver, Applications of Lie Groups to Differential Equations. Second ed., Grad. Texts in Math., 107, Springer-Verlag, 1993.

  29. J. Praught and G.R. Smirnov, Andrew Lenard: a mystery unraveled, SIGMA Symmetry Integrability Geom. Methods Appl., 1 (2005), paper 005, 7 pp. (electronic).

  30. Sato M., Kashiwara M.: The determinant of matrices of pseudo-differential operators, Proc. Japan Acad 51, 17–19 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. L.R. Volevič, On general systems of differential equations, Dokl. Akad. Nauk SSSR, 132 (1960), 20–23 (Russian), translated as Soviet Math. Dokl., 1 (1960), 458–461.

    Google Scholar 

  32. Zakharov V.E., Faddeev L.D.: Korteweg–de Vries equation: A completely integrable Hamiltonian system, Funct. Anal. Appl 5, 280–287 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto De Sole.

Additional information

Communicated by: Yasuyuki Kawahigashi

To the memory of Boris Kupershmidt (11/27/1946–12/12/2010)

Parts of this work were done while the first author was visiting the Department of Mathematics of MIT, and while the second author was visiting the newly created Center for Mathematics and Theoretical Physics in Rome, and the paper was completed while both authors were visiting the MSC and the Department of Mathematics of Tsinghua University in Beijing.

The first author was partially supported by PRIN and AST grants.

The second author was partially supported by an NSF grant, and an ERC advanced grant.

About this article

Cite this article

De Sole, A., Kac, V.G. The variational Poisson cohomology. Jpn. J. Math. 8, 1–145 (2013). https://doi.org/10.1007/s11537-013-1124-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-013-1124-3

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation