Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Randomizing Quantum States: Constructions and Applications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The construction of a perfectly secure private quantum channel in dimension d is known to require 2 log d shared random key bits between the sender and receiver. We show that if only near-perfect security is required, the size of the key can be reduced by a factor of two. More specifically, we show that there exists a set of roughly d log d unitary operators whose average effect on every input pure state is almost perfectly randomizing, as compared to the d2 operators required to randomize perfectly. Aside from the private quantum channel, variations of this construction can be applied to many other tasks in quantum information processing. We show, for instance, that it can be used to construct LOCC data hiding schemes for bits and qubits that are much more efficient than any others known, allowing roughly  log d qubits to be hidden in 2 log d qubits. The method can also be used to exhibit the existence of quantum states with locked classical correlations, an arbitrarily large amplification of the correlation being accomplished by sending a negligibly small classical key. Our construction also provides the basic building block for a method of remotely preparing arbitrary d-dimensional pure quantum states using approximately  log d bits of communication and  log d ebits of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braunstein, S., Lo, H.-K., Spiller, T.: Forgetting qubits is hot to do. Unpublished manuscript, 1999

  2. Boykin, P. O., Roychowdhury, V.: Optimal encryption of quantum bits. http://arxiv.org/abs/quant-ph/0003059, 2000

  3. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In IEEE Symposium on Foundations of Computer Science (FOCS), 2000, pp. 547–553

  4. Bennett, C. H., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  MATH  Google Scholar 

  5. Eggeling, T., Werner, R. F.: Hiding classical data in multi-partite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002)

    Article  Google Scholar 

  6. DiVincenzo, D. P., Hayden, P., Terhal, B. M.: Hiding quantum data. Found. Phys. 33(11), 1629–1647 (2003)

    Article  Google Scholar 

  7. DiVincenzo, D.P., Leung, D. W., Terhal, B. M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002)

    Article  MATH  Google Scholar 

  8. DiVincenzo, D. P., Horodecki, M., Leung, D., Smolin, J., Terhal, B. M.: Locking classical correlation in quantum states. Phys. Rev. Lett. 92, 067902 (2004)

    Article  Google Scholar 

  9. Bennett, C. H., Hayden, P., Leung, D., Shor, P. W., Winter, A.: Remote preparation of quantum states. http://arxiv.org/abs/quant-ph/0307100, 2003

  10. Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lo, H.-K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  Google Scholar 

  12. Leung, D.: Quantum vernam cipher. Quantum Info. Comp. 2, 14–34 (2001)

    MATH  Google Scholar 

  13. Leung, D., Shor, P.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  Google Scholar 

  14. Holevo, A. S.: Statistical problems in quantum physics. In: G. Maruyama J. V. Prokhorov, editors, Proceedings of the second Japan-USSR Symposium on Probability Theory, Volume 330 of Lecture Notes in Mathematics, Berlin: Springer-Verlag, 1973, pp. 104–119

  15. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. New York: Springer-Verlag, 1993

  16. Zyczkowski, K., Sommers, H.-J.: Truncations of random unitary matrices. J. Phys. A 33, 2045–2057 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bennett, C. H., DiVincenzo, D. P., Fuchs, C. A., Mor, T., Rains, E., Shor, P. W., Smolin, J. A., Wootters, W. K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070–1091 (1999)

    Article  Google Scholar 

  18. Hayden, P.: Spin-cycle entanglement. In preparation

  19. Verstraete, F., Cirac, J. I.: Quantum nonlocality in the presence of superselection rules and data hiding protocols. Phys. Rev. Lett. 91, 10404 (2003)

    Article  Google Scholar 

  20. Ohya, M., Petz, D.: Quantum entropy and its use. Texts and monographs in physics. Berlin: Springer-Verlag, 1993

  21. Hausladen, P., Wootters, W. K.: A pretty good measurement for distinguishing quantum states. J. Mod. Opt. 41, 2385–2390 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W. K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869–1876 (1996)

    Article  MathSciNet  Google Scholar 

  23. Fuchs, C. A., van de Graaf, J.: Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Theory 45, 1216–1227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)

    Article  MathSciNet  Google Scholar 

  25. Maasen, H., Uffink, I.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988)

    Article  Google Scholar 

  26. Schumacher, B.: Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)

    Article  MathSciNet  Google Scholar 

  27. Fannes, M.: A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31, 291–294 (1973)

    Google Scholar 

  28. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Number 1200 in Lecture Notes in Mathematics. Springer-Verlag, 1986

  29. Jozsa, R., Robb, D., Wootters, W.K.: Lower bound for accessible information in quantum mechanics. Phys. Rev. A 49(2), 668–677 (1994)

    Article  Google Scholar 

  30. Young, R. M.: Euler’s constant. Math. Gaz. 75, 187–190 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Hayden.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, P., Leung, D., Shor, P. et al. Randomizing Quantum States: Constructions and Applications. Commun. Math. Phys. 250, 371–391 (2004). https://doi.org/10.1007/s00220-004-1087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1087-6

Keywords

Navigation