Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Decoupling with Random Quantum Circuits

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Decoupling has become a central concept in quantum information theory, with applications including proving coding theorems, randomness extraction and the study of conditions for reaching thermal equilibrium. However, our understanding of the dynamics that lead to decoupling is limited. In fact, the only families of transformations that are known to lead to decoupling are (approximate) unitary two-designs, i.e., measures over the unitary group that behave like the Haar measure as far as the first two moments are concerned. Such families include for example random quantum circuits with O(n 2) gates, where n is the number of qubits in the system under consideration. In fact, all known constructions of decoupling circuits use Ω(n 2) gates. Here, we prove that random quantum circuits with O(n log2 n) gates satisfy an essentially optimal decoupling theorem. In addition, these circuits can be implemented in depth O(log3 n). This proves that decoupling can happen in a time that scales polylogarithmically in the number of particles in the system, provided all the particles are allowed to interact. Our proof does not proceed by showing that such circuits are approximate two-designs in the usual sense, but rather we directly analyze the decoupling property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abeyesinghe A., Devetak I., Hayden P., Winter A.: The mother of all protocols: Restructuring quantum information’s family tree. Proc. Roy. Soc. A Math. Phys. 465, 2537 (2009) arXiv:quant-ph/0606225

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Berta, M.: Single-shot quantum state merging (2009). arXiv:0912.4495

  3. Brown, W., Fawzi, O.: Short random circuits define good quantum error correcting codes. In: Proc. IEEE ISIT, pp. 346–350 (2013). arXiv:1312.7646

  4. Berta, M., Fawzi, O., Wehner, S.: Quantum to classical randomness extractors. In: Proc. CRYPTO, LNCS, vol. 7417, pp. 776–793 (2012). arXiv:1111.2026

  5. Bhatia R.: Matrix Analysis. Springer, Berlin (1997)

    Book  Google Scholar 

  6. Brandao, F.G.S.L, Harrow, A.W., Horodecki, M.: Local random quantum circuits are approximate polynomial-designs (2012). arXiv:1208.0692

  7. Brown, W., Poulin, D.: Approximate designs need not scramble (2015, in preparation)

  8. Brown W.G., Viola L.: Convergence rates for arbitrary statistical moments of random quantum circuits. Phys. Rev. Lett. 104, 250501 (2010) arXiv:0910.0913

    Article  ADS  Google Scholar 

  9. Cleve, R., Leung, D., Liu, L., Wang, C.: Near-linear constructions of exact unitary 2-designs (2015). arXiv:1501.04592

  10. Dupuis F., Berta M., Wullschleger J., Renner R.: One-shot decoupling. Commun. Math. Phys. 328(1), 251–284 (2014) arXiv:1012.6044

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Dankert C., Cleve R., Emerson J., Livine E.: Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80(1), 12304 (2009) arXiv:quant-ph/0606161

    Article  ADS  Google Scholar 

  12. Dupuis F., Fawzi O., Wehner S.: Entanglement sampling and applications. IEEE Trans. Inform. Theory 61(2), 1093–1112 (2015) arXiv:1305.1316

    Article  MathSciNet  Google Scholar 

  13. del Rio L., Åberg J., Renner R., Dahlsten O., Vedral V.: The thermodynamic meaning of negative entropy. Nature 474(7349), 61–63 (2011)

    Article  Google Scholar 

  14. del Rio, L., Hutter, A., Renner, R., Wehner, S.: Relative thermalization (2014). arXiv:1401.7997

  15. Dupuis, F.: The decoupling approach to quantum information theory. PhD thesis, Université de Montreal (2010). arXiv:1004.1641

  16. Emerson J., Livine E., Lloyd S.: Convergence conditions for random quantum circuits. Phys. Rev. A 72(6), 060302 (2005) arXiv:quant-ph/0503210

    Article  MathSciNet  ADS  Google Scholar 

  17. Emerson J., Weinstein Y.S., Saraceno M., Lloyd S., Cory D.G.: Pseudo-random unitary operators for quantum information processing. Science 302(5653), 2098–2100 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Harrow A., Low R.: Random quantum circuits are approximate 2-designs. Commun. Math. Phys. 291, 257–302 (2009) arXiv:0802.1919

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006) arXiv:quant-ph/0407049

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Horodecki M., Oppenheim J., Winter A.: Partial quantum information. Nature 436, 673–676 (2005) arXiv:quant-ph/0505062

    Article  ADS  Google Scholar 

  21. Horodecki M., Oppenheim J., Winter A.: Quantum state merging and negative information. Commun. Math. Phys. 269, 107 (2006) arXiv:quant-ph/0512247

    Article  MathSciNet  ADS  Google Scholar 

  22. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys., 120 (2007). arXiv:0708.4025

  23. Hamma A., Santra S., Zanardi P.: Quantum entanglement in random physical states. Phys. Rev. Lett. 109, 040502 (2012) arXiv:1109.4391

    Article  ADS  Google Scholar 

  24. Hutter, A.: Understanding Equipartition and Thermalization from Decoupling. http://www.quantumlah.org/media/thesis/NCQT_AdrianHutter_MSc2011.pdf (2011)

  25. Hutter A., Wehner S.: Dependence of a quantum-mechanical system on its own initial state and the initial state of the environment it interacts with. Phys. Rev. A 87, 012121 (2013) arXiv:1111.3080

    Article  ADS  Google Scholar 

  26. Low, R.A.: Pseudo-randomness and learning in quantum computation. PhD thesis, Bristol (2010). arXiv:1006.5227

  27. Lloyd S., Preskill J.: Unitarity of black hole evaporation in final-state projection models. J. High Energy Phys. 08, 126 (2014)

    Article  ADS  Google Scholar 

  28. Lashkari N., Stanford D., Hastings M., Osborne T., Hayden P.: Towards the fast scrambling conjecture. J. High Energy Phys. 2013(4), 1–33 2013 (2013) arXiv:1111.6580

    Article  MathSciNet  Google Scholar 

  29. Mitzenmacher M., Upfal E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  30. Oliveira R., Dahlsten O.C.O., Plenio M.B.: Generic entanglement can be generated efficiently. Phys. Rev. Lett. 98(13), 130502 (2007) arXiv:quant-ph/0605126

    Article  ADS  Google Scholar 

  31. Renes J., Dupuis F., Renner R.: Efficient polar coding of quantum information. Phys. Rev. Lett. 109, 050504 (2012) arXiv:1109.3195

    Article  ADS  Google Scholar 

  32. Szehr O., Dupuis F., Tomamichel M., Renner R.: Decoupling with unitary approximate two-designs. New J. Phys. 15(5), 053022 (2013) arXiv:1109.4348

    Article  MathSciNet  ADS  Google Scholar 

  33. Sutter, D., Renes, J., Dupuis, F., Renner, R.: Efficient quantum channel coding scheme requiring no preshared entanglement. In: Proc. IEEE ISIT (2013)

  34. Sekino Y., Susskind L.: Fast scramblers. J. High Energy Phys. 2008(10), 065 (2008) arXiv:0808.2096

    Article  Google Scholar 

  35. Toacute;th G., García-Ripoll J.J.: Efficient algorithm for multiqudit twirling for ensemble quantum computation. Phys. Rev. A 75(4), 042311 (2007) arXiv:quant-ph/0609052

    Article  MathSciNet  ADS  Google Scholar 

  36. Vadhan, S.: Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(13), 1–336 (2011). http://people.seas.harvard.edu/salil/pseudorandomness/

  37. Wilde, M., Renes, J.: Quantum polar codes for arbitrary channels. In: Proc. IEEE ISIT, pp. 334–338 (2012)

  38. Žnidarič M.: Exact convergence times for generation of random bipartite entanglement. Phys. Rev. A 78(3), 032324 (2008) arXiv:0809.0554

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Fawzi.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, W., Fawzi, O. Decoupling with Random Quantum Circuits. Commun. Math. Phys. 340, 867–900 (2015). https://doi.org/10.1007/s00220-015-2470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2470-1

Keywords

Navigation