Abstract
We classify the \( \mathcal{N}=4 \) supersymmetric AdS5 backgrounds that arise as solutions of five-dimensional \( \mathcal{N}=4 \) gauged supergravity. We express our results in terms of the allowed embedding tensor components and identify the structure of the associated gauge groups. We show that the moduli space of these AdS vacua is of the form SU(1, m)/U(1) × SU(m) and discuss our results regarding holographically dual \( \mathcal{N}=2 \) SCFTs and their conformal manifolds.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].
O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of \( \mathcal{N}=4 \) SYM and type IIB supergravity on AdS 5 × S 5, JHEP 06 (2002) 039 [hep-th/0205090] [INSPIRE].
B. Kol, On conformal deformations, JHEP 09 (2002) 046 [hep-th/0205141] [INSPIRE].
Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [INSPIRE].
S. de Alwis, J. Louis, L. McAllister, H. Triendl and A. Westphal, Moduli spaces in AdS 4 supergravity, JHEP 05 (2014) 102 [arXiv:1312.5659] [INSPIRE].
J. Louis and H. Triendl, Maximally supersymmetric AdS 4 vacua in N = 4 supergravity, JHEP 10 (2014) 007 [arXiv:1406.3363] [INSPIRE].
C.-M. Chang and X. Yin, Families of conformal fixed points of \( \mathcal{N}=2 \) Chern-Simons-matter theories, JHEP 05 (2010) 108 [arXiv:1002.0568] [INSPIRE].
D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].
K. Intriligator, private communication.
C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of superconformal field theories, to appear.
Y. Tachikawa, A review of the T N theory and its cousins, Prog. Theor. Exp. Phys. 2015 (2015) 11B102 [arXiv:1504.01481] [INSPIRE].
J. Louis and S. Lüst, Supersymmetric AdS 7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, arXiv:1506.08040 [INSPIRE].
L.J. Romans, Gauged N = 4 supergravities in five-dimensions and their magnetovac backgrounds, Nucl. Phys. B 267 (1986) 433 [INSPIRE].
M. Awada and P.K. Townsend, N = 4 Maxwell-Einstein supergravity in five-dimensions and its SU(2) gauging, Nucl. Phys. B 255 (1985) 617 [INSPIRE].
G. Dall’Agata, C. Herrmann and M. Zagermann, General matter coupled \( \mathcal{N}=4 \) gauged supergravity in five-dimensions, Nucl. Phys. B 612 (2001) 123 [hep-th/0103106] [INSPIRE].
J. Schön and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].
R. Corrado, M. Günaydin, N.P. Warner and M. Zagermann, Orbifolds and flows from gauged supergravity, Phys. Rev. D 65 (2002) 125024 [hep-th/0203057] [INSPIRE].
S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].
H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].
B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 5 supergravities, Nucl. Phys. B 716 (2005) 215 [hep-th/0412173] [INSPIRE].
N. Seiberg, Observations on the moduli space of superconformal field theories, Nucl. Phys. B 303 (1988) 286 [INSPIRE].
S. Cecotti, N = 2 Landau-Ginzburg versus Calabi-Yau σ-models: nonperturbative aspects, Int. J. Mod. Phys. A 6 (1991) 1749 [INSPIRE].
M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2) \( \mathcal{N}=2 \) superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].
M. Baggio, V. Niarchos and K. Papadodimas, tt * equations, localization and exact chiral rings in 4d \( \mathcal{N}=2 \) SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].
K. Papadodimas, Topological anti-topological fusion in four-dimensional superconformal field theories, JHEP 08 (2010) 118 [arXiv:0910.4963] [INSPIRE].
S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys. B 367 (1991) 359 [INSPIRE].
E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere partition functions and the Zamolodchikov metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].
J. Gomis and N. Ishtiaque, Kähler potential and ambiguities in 4d \( \mathcal{N}=2 \) SCFTs, JHEP 04 (2015) 169 [arXiv:1409.5325] [INSPIRE].
M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].
M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 d = 5 supergravity, Nucl. Phys. B 259 (1985) 460 [INSPIRE].
M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].
M. Günaydin and M. Zagermann, The gauging of five-dimensional, \( \mathcal{N}=2 \) Maxwell-Einstein supergravity theories coupled to tensor multiplets, Nucl. Phys. B 572 (2000) 131 [hep-th/9912027] [INSPIRE].
M. Günaydin, S. McReynolds and M. Zagermann, The R-map and the coupling of \( \mathcal{N}=2 \) tensor multiplets in 5 and 4 dimensions, JHEP 01 (2006) 168 [hep-th/0511025] [INSPIRE].
M. de Roo and P. Wagemans, Gauge matter coupling in N = 4 supergravity, Nucl. Phys. B 262 (1985) 644 [INSPIRE].
S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Oxford University Press, Oxford U.K. (2001).
W.A. Sabra, Symplectic embeddings and special Kähler geometry of CP(n − 1, 1), Nucl. Phys. B 486 (1997) 629 [hep-th/9608106] [INSPIRE].
E. Cremmer et al., Vector multiplets coupled to N = 2 supergravity: super-Higgs effect, flat potentials and geometric structure, Nucl. Phys. B 250 (1985) 385 [INSPIRE].
L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].
A. Kehagias, New type IIB vacua and their F-theory interpretation, Phys. Lett. B 435 (1998) 337 [hep-th/9805131] [INSPIRE].
D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].
J. Polchinski, Introduction to gauge/gravity duality, arXiv:1010.6134 [INSPIRE].
A. Buchel and J.T. Liu, Gauged supergravity from type IIB string theory on Y p,q manifolds, Nucl. Phys. B 771 (2007) 93 [hep-th/0608002] [INSPIRE].
J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].
D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].
J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].
D. Cassani and A.F. Faedo, A supersymmetric consistent truncation for conifold solutions, Nucl. Phys. B 843 (2011) 455 [arXiv:1008.0883] [INSPIRE].
I. Bena, G. Giecold, M. Graña, N. Halmagyi and F. Orsi, Supersymmetric consistent truncations of IIB on T 1,1, JHEP 04 (2011) 021 [arXiv:1008.0983] [INSPIRE].
M. Günaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].
H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, Mass spectrum of chiral ten-dimensional N = 2 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].
V. Asnin, On metric geometry of conformal moduli spaces of four-dimensional superconformal theories, JHEP 09 (2010) 012 [arXiv:0912.2529] [INSPIRE].
B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].
D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term, JHEP 12 (2013) 062[arXiv:1307.6546] [INSPIRE].
T. Kugo and P.K. Townsend, Supersymmetry and the division algebras, Nucl. Phys. B 221 (1983) 357 [INSPIRE].
P.C. West, Supergravity, brane dynamics and string duality, in Duality and supersymmetric theories, Cambridge University Press, Cambridge U.K. (1997), pp. 147–266 [hep-th/9811101] [INSPIRE].
S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, \( \mathcal{N}=4 \) SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].
E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Extremal correlators in the AdS/CFT correspondence, in The many faces of the superworld, M.A. Shifman ed., World Scientific (2000), pp. 332–360 [hep-th/9908160] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1507.01623
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Louis, J., Triendl, H. & Zagermann, M. \( \mathcal{N}=4 \) supersymmetric AdS5 vacua and their moduli spaces. J. High Energ. Phys. 2015, 83 (2015). https://doi.org/10.1007/JHEP10(2015)083
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2015)083