Abstract
We give a classification of fully supersymmetric chiral \( \mathcal{N} \) = (8, 0) AdS3 vacua in general three-dimensional half-maximal gauged supergravities coupled to matter. These theories exhibit a wealth of supersymmetric vacua with background isometries given by the supergroups OSp(8|2, ℝ), F(4), SU(4|1, 1), and OSp(4∗|4), respectively. We identify the associated embedding tensors and the structure of the associated gauge groups. We furthermore compute the mass spectra around these vacua. As an off-spin we include results for a number of \( \mathcal{N} \) = (7, 0) vacua with supergroups OSp(7|2, ℝ) and G(3), respectively. We also comment on their possible higher-dimensional uplifts.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].
O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].
H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett.86 (2001) 1686 [hep-th/0010076] [INSPIRE].
B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys.B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
J. Schön and M. Weidner, Gauged N = 4 supergravities, JHEP05 (2006) 034 [hep-th/0602024] [INSPIRE].
J. Louis and H. Triendl, Maximally supersymmetric AdS4vacua in N = 4 supergravity, JHEP10 (2014) 007 [arXiv:1406.3363] [INSPIRE].
J. Louis and S. Lüst, Supersymmetric AdS7backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP10 (2015) 120 [arXiv:1506.08040] [INSPIRE].
J. Louis, H. Triendl and M. Zagermann, N = 4 supersymmetric AdS5vacua and their moduli spaces, JHEP10 (2015) 083 [arXiv:1507.01623] [INSPIRE].
P. Karndumri and J. Louis, Supersymmetric AdS6vacua in six-dimensional N = (1, 1) gauged supergravity, JHEP01 (2017) 069 [arXiv:1612.00301] [INSPIRE].
S. Lüst, P. Ruter and J. Louis, Maximally supersymmetric AdS solutions and their moduli spaces, JHEP03 (2018) 019 [arXiv:1711.06180] [INSPIRE].
T. Fischbacher, H. Nicolai and H. Samtleben, Vacua of maximal gauged D = 3 supergravities, Class. Quant. Grav.19 (2002) 5297 [hep-th/0207206] [INSPIRE].
M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions, Phys. Lett.B 143 (1984) 103 [INSPIRE].
M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys.B 272 (1986) 598 [INSPIRE].
B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE]. [16] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].
A. Chatrabhuti and P. Karndumri, Vacua and RG flows in N = 9 three dimensional gauged supergravity, JHEP10 (2010) 098 [arXiv:1007.5438] [INSPIRE].
A. Chatrabhuti and P. Karndumri, Vacua of N = 10 three dimensional gauged supergravity, Class. Quant. Grav.28 (2011) 125027 [arXiv:1011.5355] [INSPIRE].
A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].
H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP04 (2001) 022 [hep-th/0103032] [INSPIRE].
B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys.B 671 (2003) 175 [hep-th/0307006] [INSPIRE].
W. Nahm, Supersymmetries and their representations, Nucl. Phys.B 135 (1978) 149 [INSPIRE].
M. Günaydin, G. Sierra and P.K. Townsend, The unitary supermultiplets of d = 3 anti-de Sitter and d = 2 conformal superalgebras, Nucl. Phys.B 274 (1986) 429 [INSPIRE].
G. Dibitetto, G. Lo Monaco, A. Passias, N. Petri and A. Tomasiello, AdS3solutions with exceptional supersymmetry, Fortsch. Phys.66 (2018) 1800060 [arXiv:1807.06602] [INSPIRE].
B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys.B 392 (1993) 3 [hep-th/9208074] [INSPIRE].
H. Nicolai and H. Samtleben, N = 8 matter coupled AdS3supergravities, Phys. Lett.B 514 (2001) 165 [hep-th/0106153] [INSPIRE].
N. Marcus and J.H. Schwarz, Three-dimensional supergravity theories, Nucl. Phys.B 228 (1983) 145 [INSPIRE].
G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP03 (2011) 137 [arXiv:1102.0239] [INSPIRE].
G. Dall’Agata and G. Inverso, On the vacua of N = 8 gauged supergravity in 4 dimensions, Nucl. Phys.B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].
I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett.B 431 (1998) 63 [hep-th/9803251] [INSPIRE].
W. Mück and K.S. Viswanathan, Conformal field theory correlators from classical scalar field theory on AdSd+1 , Phys. Rev.D 58 (1998) 041901 [hep-th/9804035] [INSPIRE].
W. Mück and K.S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev.D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].
W.S. l’Yi, Correlators of currents corresponding to the massive p form fields in AdS/CFT correspondence, Phys. Lett.B 448 (1999) 218 [hep-th/9811097] [INSPIRE].
A. Volovich, Rarita-Schwinger field in the AdS/CFT correspondence, JHEP09 (1998) 022 [hep-th/9809009] [INSPIRE].
G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP06 (2011) 030 [arXiv:1104.3587] [INSPIRE].
H. Nicolai and H. Samtleben, Kaluza-Klein supergravity on AdS3× S3 , JHEP09 (2003) 036 [hep-th/0306202] [INSPIRE].
U. Gran, J.B. Gutowski and G. Papadopoulos, On supersymmetric anti-de-Sitter, de-Sitter and Minkowski flux backgrounds, Class. Quant. Grav.35 (2018) 065016 [arXiv:1607.00191] [INSPIRE].
S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing superalgebras for warped AdS backgrounds, JHEP12 (2018) 047 [arXiv:1710.03713] [INSPIRE].
A.S. Haupt, S. Lautz and G. Papadopoulos, A non-existence theorem for N > 16 supersymmetric AdS3backgrounds, JHEP07 (2018) 178 [arXiv:1803.08428] [INSPIRE].
O. Hohm, E.T. Musaev and H. Samtleben, O(d + 1, d + 1) enhanced double field theory, JHEP10 (2017) 086 [arXiv:1707.06693] [INSPIRE].
O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8) , Phys. Rev.D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
E. Malek, Half-maximal supersymmetry from exceptional field theory, Fortsch. Phys.65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].
N. Kim, AdS3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE].
J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS3solutions of type IIB supergravity, Phys. Rev. Lett.97 (2006) 171601 [hep-th/0606221] [INSPIRE].
E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory. I: local solutions, JHEP08 (2008) 028 [arXiv:0806.0605] [INSPIRE].
E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, Supersymmetric AdS3× S2M-theory geometries with fluxes, JHEP08 (2010) 114 [arXiv:1005.4527] [INSPIRE].
Y. Lozano, N.T. Macpherson, J. Montero and E. Ó. Colgáin, New AdS3× S2T-duals with N = (0, 4) supersymmetry, JHEP08 (2015) 121 [arXiv:1507.02659] [INSPIRE].
C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS3/CFT2 , JHEP08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
L. Wulff, All symmetric AdSn>2solutions of type-II supergravity, J. Phys.A 50 (2017) 495402 [arXiv:1706.02118] [INSPIRE].
L. Eberhardt, Supersymmetric AdS3supergravity backgrounds and holography, JHEP02 (2018) 087 [arXiv:1710.09826] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1907.12764
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Deger, N.S., Eloy, C. & Samtleben, H. \( \mathcal{N} \) = (8, 0) AdS vacua of three-dimensional supergravity. J. High Energ. Phys. 2019, 145 (2019). https://doi.org/10.1007/JHEP10(2019)145
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2019)145