Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Holographic fermions in charged Gauss-Bonnet black hole

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the properties of the Green’s functions of the fermions in charged Gauss-Bonnet black hole. What we want to do is to investigate how the presence of Gauss-Bonnet coupling constant α affects the dispersion relation, which is a characteristic of Fermi or non-Fermi liquid, as well as what properties such a system has, for instance, the Particle-hole (a)symmetry. One important result of this research is that we find for q = 1, the behavior of this system is different from that of the Landau Fermi liquid and so the system can be candidates for holographic dual of generalized non-Fermi liquids. More importantly, the behavior of this system increasingly similar to that of the Landau Fermi liquid when α is approaching its lower bound. Also we find that this system possesses the Particle-hole asymmetry when q ≠ 0, another important characteristic of this system. In addition, we also investigate briefly the cases of the charge dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [SPIRES].

    ADS  Google Scholar 

  5. M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan and R. Shankar, Properties of CFT s dual to Charged BTZ black-hole, Nucl. Phys. B 839 (2010) 526 [arXiv:0909.4051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Holographic Non-Fermi Liquid in a Background Magnetic Field, Phys. Rev. D 82 (2010) 044036 [arXiv:0908.1436] [SPIRES].

    ADS  Google Scholar 

  8. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].

    Article  ADS  Google Scholar 

  9. T. Faulkner and J. Polchinski, Semi-Holographic Fermi Liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [SPIRES].

    Article  ADS  Google Scholar 

  10. E. Gubankova et al., Holographic fermions in external magnetic fields, arXiv:1011.4051 [SPIRES].

  11. M. Edalati, R.G. Leigh, K.W. Lo and P.W. Phillips, Dynamical Gap and Cuprate-like Physics from Holography, Phys. Rev. D 83 (2011) 046012 [arXiv:1012.3751] [SPIRES].

    ADS  Google Scholar 

  12. D. Guarrera and J. McGreevy, Holographic Fermi surfaces and bulk dipole couplings, arXiv:1102.3908 [SPIRES].

  13. R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A.B. Pavan, Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [SPIRES].

    ADS  Google Scholar 

  15. Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, Phys. Lett. B 693 (2010) 159 [arXiv:1005.4743] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D 82 (2010) 066007 [arXiv:1007.3321] [SPIRES].

    ADS  Google Scholar 

  17. L. Barclay, R. Gregory, S. Kanno and P. Sutcliffe, Gauss-Bonnet Holographic Superconductors, JHEP 12 (2010) 029 [arXiv:1009.1991] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [SPIRES].

    Article  ADS  Google Scholar 

  19. Y. Brihaye and B. Hartmann, Holographic Superconductors in 3+ 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [SPIRES].

    ADS  Google Scholar 

  20. J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. X.-M. Kuang, W.-J. Li and Y. Ling, Holographic Superconductors in Quasi-topological Gravity, JHEP 12 (2010) 069 [arXiv:1008.4066] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Siani, Holographic Superconductors and Higher Curvature Corrections, JHEP 12 (2010) 035 [arXiv:1010.0700] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Ritz and J. Ward, Weyl corrections to holographic conductivity, Phys. Rev. D 79 (2009) 066003 [arXiv:0811.4195] [SPIRES].

    ADS  Google Scholar 

  25. R.C. Myers, S. Sachdev and A. Singh, Holographic Quantum Critical Transport without Self-Duality, Phys. Rev. D 83 (2011) 066017 [arXiv:1010.0443] [SPIRES].

    ADS  Google Scholar 

  26. J.-P. Wu, Y. Cao, X.-M. Kuang and W.-J. Li, The 3+ 1 holographic superconductor with Weyl corrections, Phys. Lett. B 697 (2011) 153 [arXiv:1010.1929] [SPIRES].

    ADS  Google Scholar 

  27. D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].

    Article  ADS  Google Scholar 

  28. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].

    ADS  Google Scholar 

  29. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  30. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity Bound, Causality Violation and Instability with Stringy Correction and Charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  32. A. Buchel and R.C. Myers, Causality of Holographic Hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

    Article  Google Scholar 

  35. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].

    Article  ADS  Google Scholar 

  36. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    Article  ADS  Google Scholar 

  37. X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].

    Article  ADS  Google Scholar 

  38. X.-H. Ge, S.-J. Sin, S.-F. Wu and G.-H. Yang, Shear viscosity and instability from third order Lovelock gravity, Phys. Rev. D 80 (2009) 104019 [arXiv:0905.2675] [SPIRES].

    ADS  Google Scholar 

  39. R. M. Wald, General Relativity, The University of Chicago Press, Chicago U.S.A. (1984).

    MATH  Google Scholar 

  40. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ’experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES].

    Article  ADS  Google Scholar 

  41. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [SPIRES].

    ADS  Google Scholar 

  42. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [SPIRES].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  44. M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. II: Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Pin Wu.

Additional information

ArXiv ePrint:1103.3982

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JP. Holographic fermions in charged Gauss-Bonnet black hole. J. High Energ. Phys. 2011, 106 (2011). https://doi.org/10.1007/JHEP07(2011)106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)106

Keywords

Navigation