Abstract
In this paper, we delve into the study of thermodynamics and phase transition of charged Gauss–Bonnet black holes within the context of anti-de Sitter space, with particular emphasis on the central charge’s role within the dual conformal field theory (CFT). We employ a holographic methodology that interprets the cosmological constant and the Newton constant as thermodynamic variables, leading to the derivation of a modified first law of thermodynamics that incorporates the thermodynamic volume and pressure. Our findings reveal that the central charge of the CFT is intrinsically linked to the variation of these constants, and its stability can be ensured by simultaneous adjustment of these constants. We further explore the phase structures of the black holes, utilizing the free energy. Our research uncovers the existence of a critical value of the central charge, beyond which the phase diagram displays a first-order phase transition between small and large black holes. We also delve into the implications of our findings on the complexity of the CFT. Our conclusions underscore the significant role of the central charge in the holographic thermodynamics and phase transition of charged Gauss–Bonnet black holes. Furthermore, we conclude that while the central charge considered provides suitable and satisfactory solutions for this black hole in 4 and 5 dimensions, it becomes necessary to introduce a unique central charge for this structure of modified gravity. In essence, the central charge in holographic thermodynamics is not a universal value and requires modification in accordance with different modified gravities. Consequently, the physics of the problem will significantly deviate from the one discussed in this article, indicating a rich and complex landscape for future work.
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)
Davies, P.C.W.: Thermodynamics of black holes. Rep. Prog. Phys. 41(8), 1313 (1978)
Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577–588 (1983)
Wald, R.M.: The thermodynamics of black holes. Living Rev. Relat. 4, 1–44 (2001)
Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13(2), 191 (1976)
Bekenstein, J.D.: Black-hole thermodynamics. Phys. Today 33(1), 24–31 (1980)
Wald, R.M.: Black Holes and Thermodynamics. Black Holes and Relativistic Stars, pp. 155–176 (1998)
Hayward, S.A.: Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Gravity 15(10), 3147 (1998)
Carter, B.M.N., Neupane, I.P.: Thermodynamics and stability of higher dimensional rotating (Kerr-) AdS black holes. Phys. Rev. D 72(4), 043534 (2005)
Ruppeiner, G.: Thermodynamic black holes. Entropy 20(6), 460 (2018)
Xiao, Y., Tian, Yu., Liu, Y.-X.: Extended black hole thermodynamics from extended Iyer–Wald formalism. Phys. Rev. Lett. 132(2), 021401 (2024)
Minamitsuji, M., Kei-ichi, M.: Black hole thermodynamics in generalized Proca theories. (2024) arXiv preprint arXiv:2403.08986
Bardeen, J.M.: Kerr metric black holes. Nature 226(5240), 64–65 (1970)
Bardeen, J.M.: Properties of black holes relevant to their observation. In: Symposium-International Astronomical Union, vol. 64. Cambridge University Press, Cambridge (1974)
Bardeen, J.M.: Timelike and null geodesics in the Kerr metric. Black Holes 215, 66 (1973)
Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quantum Gravity 26(19), 195011 (2009)
Kubiznak, D., Mann, R.B.: P–V criticality of charged AdS black holes. J. High Energy Phys. 2012(7), 1–25 (2012)
Cai, R.-G.: Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65(8), 084014 (2002)
Altamirano, N., et al.: Kerr-AdS analogue of triple point and solid/liquid/gas phase transition. Class. Quantum Gravity 31(4), 042001 (2014)
Altamirano, N., Kubizňák, D., Mann, R.B.: Reentrant phase transitions in rotating anti-de Sitter black holes. Phys. Rev. D 88(10), 101502 (2013)
Dutta, S., Jain, A., Soni, R.: Dyonic black hole and holography. J. High Energy Phys. 2013(12), 1–30 (2013)
Johnson, C.V.: Holographic heat engines. Class. Quantum Gravity 31(20), 205002 (2014)
Kubizňák, D., Mann, R.B.: Black hole chemistry. Can. J. Phys. 93(9), 999–1002 (2015)
Kubizňák, D., Mann, R.B., Teo, M.: Black hole chemistry: thermodynamics with Lambda. Class. Quantum Gravity 34(6), 063001 (2017)
Banerjee, R., Roychowdhury, D.: Thermodynamics of phase transition in higher dimensional AdS black holes. J. High Energy Phys. 2011(11), 1–13 (2011)
Mandal, A., Samanta, S., Majhi, B.R.: Phase transition and critical phenomena of black holes: a general approach. Phys. Rev. D 94(6), 064069 (2016)
Maity, R., Roy, P., Sarkar, T.: Black hole phase transitions and the chemical potential. Phys. Lett. B 765, 386–394 (2017)
Silva, P.J.: Phase transitions and statistical mechanics for BPS black holes in AdS/CFT. J. High Energy Phys. 3, 15 (2007)
El Moumni, H.: Revisiting the phase transition of AdS–Maxwell–Power–Yang–Mills black holes via AdS/CFT tools. Phys. Lett. B 776, 124–132 (2018)
Sokolowski, L.M., Mazur, P.: Second-order phase transitions in black-hole thermodynamics. J. Phys. A Math. Gen. 13(3), 1113 (1980)
Wei, S.-W., Liu, Y.-X.: Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition. Phys. Rev. Lett. 115(11), 111302 (2015)
Li, R., Wang, J.: Thermodynamics and kinetics of Hawking–Page phase transition. Phys. Rev. D 102(2), 024085 (2020)
Aharony, O., Urbach, E.Y., Weiss, M.: Generalized Hawking–Page transitions. J. High Energy Phys. 2019(8), 1–21 (2019)
Wei, S.-W., Liu, Y.-X., Mann, R.B.: Novel dual relation and constant in Hawking–Page phase transitions. Phys. Rev. D 102(10), 104011 (2020)
Belhaj, A., et al.: On universal constants of AdS black holes from Hawking–Page phase transition. Phys. Lett. B 811, 135871 (2020)
Barzi, F., El Moumni, H., Masmar, K.: Rényi topology of charged-flat black hole: Hawking–Page and Van-der-Waals phase transitions. J. High Energy Astrophys. 6, 66 (2024)
Wei, S.-W., Liu, Y.-X.: Topology of black hole thermodynamics. Phys. Rev. D 105(10), 104003 (2022)
Yerra, P.K., Bhamidipati, C.: Topology of black hole thermodynamics in Gauss–Bonnet gravity. Phys. Rev. D 105(10), 104053 (2022)
Bai, N.-C., Li, L., Tao, J.: Topology of black hole thermodynamics in Lovelock gravity. Phys. Rev. D 107(6), 064015 (2023)
Wei, S.-W., Liu, Y.-X., Mann, R.B.: Black hole solutions as topological thermodynamic defects. Phys. Rev. Lett. 129(19), 191101 (2022)
Wu, D.: Topological classes of rotating black holes. Phys. Rev. D 107(2), 024024 (2023)
Wu, D.: Topological classes of thermodynamics of the four-dimensional static accelerating black holes. Phys. Rev. D 108(8), 084041 (2023)
Sadeghi, J., et al.: Thermodynamic topology of black holes from bulk-boundary, extended, and restricted phase space perspectives. Ann. Phys. 66, 169569 (2023)
Zhang, M.-Y., et al.: Topology of nonlinearly charged black hole chemistry via massive gravity. Eur. Phys. J. C 83, 773 (2023)
Alipour, M.R., et al.: Topological classification and black hole thermodynamics. Phys. Dark Univ. 42, 101361 (2023)
Sadeghi, J., et al.: Bulk-boundary and RPS thermodynamics from Topology perspective (2023). arXiv preprint arXiv:2306.16117
Sadeghi, J., et al.: Bardeen black hole thermodynamics from topological perspective. Ann. Phys. 66, 169391 (2023)
Zhang, M., Jiang, J.: Bulk-boundary thermodynamic equivalence: a topology viewpoint. J. High Energy Phys. 2023(6), 1–17 (2023)
Sadeghi, J., et al.: Topology of Hayward-AdS black hole thermodynamics. Phys. Scr. 99, 025003 (2024)
Sadeghi, J., et al.: Thermodynamic topology and photon spheres in the hyperscaling violating black holes. Astropart. Phys. 66, 102–920 (2023)
Dutta, S., Punia, G.S.: String theory corrections to holographic black hole chemistry. Phys. Rev. D 106(2), 026003 (2022)
Sinamuli, M., Mann, R.B.: Higher order corrections to holographic black hole chemistry. Phys. Rev. D 96(8), 086008 (2017)
Mir, M., et al.: Black hole chemistry and holography in generalized quasi-topological gravity. J. High Energy Phys. 2019(8), 1–70 (2019)
Kubizňák, D., Mann, R.B., Teo, M.: Black hole chemistry: thermodynamics with Lambda. Class. Quantum Gravity 34(6), 063001 (2017)
Haro, D., Sebastian, K.S., Solodukhin, S.N.: Holographic reconstruction of spacetime and renormalization in the ads/cft correspondence. Commun. Math. Phys. 217, 595–622 (2001)
Rivelles, V.O.: Holographic principle and ads/cft correspondence. arXiv preprint arXiv:hep-th/9912139 (1999)
Dobashi, S., Yoneya, T.: Resolving the holography in the plane-wave limit of AdS/CFT correspondence. Nucl. Phys. B 711(1–2), 3–53 (2005)
Damghan, I.: Holography and Its Applications (ICHA2 2023) (2023)
Karch, A., Robinson, B.: Holographic black hole chemistry. J. High Energy Phys. 2015(12), 1–15 (2015)
Mir, M., et al.: Black hole chemistry and holography in generalized quasi-topological gravity. J. High Energy Phys. 2019(8), 1–70 (2019)
Karch, A., Robinson, B.: Holographic black hole chemistry. J. High Energy Phys. 2015(12), 1–15 (2015)
Sinamuli, M., Mann, R.B.: Higher order corrections to holographic black hole chemistry. Phys. Rev. D 96(8), 086008 (2017)
Visser, M.R.: Holographic thermodynamics requires a chemical potential for color. Phys. Rev. D 105(10), 106014 (2022)
Gibbons, G., Kallosh, R., Kol, B.: Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77(25), 4992 (1996)
DE Creighton, J., Mann, R.B.: Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. Phys. Rev. D 52(8), 4569 (1995)
Cong, W., Kubizňák, D., Mann, R.B.: Thermodynamics of AdS black holes: critical behavior of the central charge. Phys. Rev. Lett. 127(9), 091301 (2021)
Qu, Y., Tao, J., Yang, H.: Thermodynamics and phase transition in central charge criticality of charged Gauss–Bonnet AdS black holes. Nucl. Phys. B 992, 116234 (2023)
Alfaia, R.B., Lobo, I.P., Brito, L.C.T.: Central charge criticality of charged AdS black hole surrounded by different fluids. Eur. Phys. J. Plus 137(3), 402 (2022)
Gao, Z., Zhao, L.: Restricted phase space thermodynamics for AdS black holes via holography. Class. Quantum Gravity 39(7), 075019 (2022)
Gao, Z., Kong, X., Zhao, L.: Thermodynamics of Kerr-AdS black holes in the restricted phase space. Eur. Phys. J. C 82(2), 112 (2022)
Alipour, M.R., Sadeghi, J., Shokri, M.: WGC and WCCC of black holes with quintessence and cloud strings in RPS space. Nucl. Phys. B 990, 116184 (2023)
Sadeghi, J., et al.: RPS thermodynamics of Taub-NUT AdS black holes in the presence of central charge and the weak gravity conjecture. Gener. Relat. Gravit. 54(10), 129 (2022)
Kumar, N., Sen, S., Gangopadhyay, S.: Phase transition structure and breaking of universal nature of central charge criticality in a Born–Infeld AdS black hole. Phys. Rev. D 106(2), 026005 (2022)
Wang, Y., Ren, J.: Thermodynamics of hairy accelerating black holes in gauged supergravity and beyond. Phys. Rev. D 106(10), 104046 (2022)
Lobo, I.P., et al.: Holographic dictionary for generic asymptotically AdS black holes (2022). arXiv preprint arXiv:2206.13664
Ghosh, A., Chandrasekhar, B., Sudipta, M.: Logarithmic corrections to black hole entropy and holography (2022). arXiv preprint arXiv:2207.02820
Bai, Y.-Y., et al.: Revisit on thermodynamics of BTZ black hole with variable Newton constant (2022). arXiv preprint arXiv:2208.11859
Dutta, S., Punia, G.S.: String theory corrections to holographic black hole chemistry. Phys. Rev. D 106(2), 026003 (2022)
Ahmed, M.B., et al.: Holographic dual of extended black hole thermodynamics. Phys. Rev. Lett. 130(18), 181401 (2023)
Johnson, C.V.: Holographic heat engines. Class. Quantum Gravity 31(20), 205002 (2014)
Dolan, B.P.: Bose condensation and branes. J. High Energy Phys. 2014(10), 1–8 (2014)
Kastor, D., Ray, S., Traschen, J.: Chemical potential in the first law for holographic entanglement entropy. J. High Energy Phys. 2014(11), 1–17 (2014)
Zhang, J.-L., Cai, R.-G., Hongwei, Yu.: Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5 \(\times \) S5 spacetime. J. High Energy Phys. 2015(2), 1–16 (2015)
Dolan, B.P.: Pressure and compressibility of conformal field theories from the AdS/CFT correspondence. Entropy 18(5), 169 (2016)
Maldacena, J.: The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38(4), 1113–1133 (1999)
Visser, M.R.: Holographic thermodynamics requires a chemical potential for color. Phys. Rev. D 105(10), 106014 (2022)
Ahmed, M.B., et al.: Holographic dual of extended black hole thermodynamics. Phys. Rev. Lett. 130(18), 181401 (2023)
Cong, W., et al.: Holographic CFT phase transitions and criticality for charged AdS black holes. J. High Energy Phys. 2022(8), 1–37 (2022)
Gong, T.-F., Jiang, J., Zhang, M.: Holographic thermodynamics of rotating black holes. J. High Energy Phys. 2023(6), 1–22 (2023)
Ahmed, M.B., et al.: Holographic CFT phase transitions and criticality for rotating AdS black holes. J. High Energy Phys. 2023(8), 1–32 (2023)
Qu, Y., Tao, J., Yang, H.: Thermodynamics and phase transition in central charge criticality of charged Gauss–Bonnet AdS black holes. Nucl. Phys. B 992, 116234 (2023)
Parikh, M.: Enhanced instability of de Sitter space in Einstein–Gauss–Bonnet gravity. Phys. Rev. D 84(4), 044048 (2011)
Chakravarti, K., Ghosh, R., Sarkar, S.: Constraining the topological Gauss–Bonnet coupling from GW150914. Phys. Rev. D 106(4), L041503 (2022)
Li, H.-L., Zeng, X.-X., Lin, R.: Holographic phase transition from novel Gauss–Bonnet AdS black holes. Eur. Phys. J. C 80(7), 652 (2020)
Glavan, D., Lin, C.: Einstein–Gauss–Bonnet gravity in four-dimensional spacetime. Phys. Rev. Lett. 124(8), 081301 (2020)
Author information
Authors and Affiliations
Contributions
J. Sadeghi: Conceptualization, Methodology. M. R Alipour: Visualization, Investigation. M.A.S Afshar: Writing—original draft. S. Noori Gashti:: Writing—review & editing, Visualization.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sadeghi, J., Alipour, M.R., Afshar, M.A.S. et al. Exploring the phase transition in charged Gauss–Bonnet black holes: a holographic thermodynamics perspectives. Gen Relativ Gravit 56, 93 (2024). https://doi.org/10.1007/s10714-024-03285-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10714-024-03285-x