Abstract
We develop a version of Soft Collinear Effective Theory (SCET) which includes finite quark masses, as well as Glauber gluons that describe the interaction of collinear partons with QCD matter. In the framework of this new effective field theory, labeled SCETM,G, we derive the massive splitting functions in the vacuum and the QCD medium for the processes Q → Qg, Q → gQ and \( g\to Q\overline{Q} \). The numerical effects due to finite quark masses are sizable and our results are consistent with the traditional approach to parton energy loss in the soft gluon emission limit. In addition, we present a new framework for including the medium-induced full splitting functions consistent with next-to-leading order calculations in QCD for inclusive hadron production. Finally, we show numerical results for the suppression of D- and B-mesons in heavy ion collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV and 2.76 TeV and compare to available data from the LHC.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
CDF collaboration, D. Acosta et al., Measurement of prompt charm meson production cross sections in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 91 (2003) 241804 [hep-ex/0307080] [INSPIRE].
CDF collaboration, D. Acosta et al., Measurement of the B + total cross section and B + differential cross section dσ/dp T in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) -TeV, Phys. Rev. D 65 (2002) 052005 [hep-ph/0111359] [INSPIRE].
CDF collaboration, D. Acosta et al., Measurement of the J/ψ meson and b−hadron production cross sections in \( p\overline{p} \) collisions at \( \sqrt{s}=1960 \) GeV, Phys. Rev. D 71 (2005) 032001 [hep-ex/0412071] [INSPIRE].
PHENIX collaboration, A. Adare et al., Heavy Quark Production in p + p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at \( \sqrt{s_{N\;N}}=200 \) GeV, Phys. Rev. C 84 (2011) 044905 [arXiv:1005.1627] [INSPIRE].
STAR collaboration, L. Adamczyk et al., Observation of D 0 Meson Nuclear Modifications in Au+Au Collisions at \( \sqrt{s_{N\;N}}=200 \) GeV, Phys. Rev. Lett. 113 (2014) 142301 [arXiv:1404.6185] [INSPIRE].
PHENIX collaboration, A. Adare et al., Heavy-quark production and elliptic flow in Au+Au collisions at \( \sqrt{s_{{}_{N\;N}}}=62.4 \) GeV, Phys. Rev. C 91 (2015) 044907 [arXiv:1405.3301] [INSPIRE].
CMS collaboration, Measurement of the B + Production Cross section in pp Collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 106 (2011) 112001 [arXiv:1101.0131] [INSPIRE].
CMS collaboration, Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, submitted to Eur. Phys. J. C (2016) [arXiv:1610.00613] [INSPIRE].
A. Grelli, D meson nuclear modification factors in Pb-Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ALICE detector, Nucl. Phys. A904-905 (2013) 635c-638c [arXiv:1210.7332] [INSPIRE].
ATLAS collaboration, Measurement of the differential cross-section of B + meson production in pp collisions at \( \sqrt{s}=7 \) TeV at ATLAS, JHEP 10 (2013) 042 [arXiv:1307.0126] [INSPIRE].
ATLAS collaboration, Measurement of D ∗± , D ± and D ± s meson production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Nucl. Phys. B 907 (2016) 717 [arXiv:1512.02913] [INSPIRE].
CMS collaboration, Measurement of the B + hadron production cross section in pp collisions at 13 TeV, CMS-PAS-BPH-15-004.
CMS collaboration, D0 meson nuclear modification factor in PbPb collisions at \( \sqrt{s_{\mathrm{N}\;\mathrm{N}}}=5.02 \) TeV, CMS-PAS-HIN-16-001.
ALICE collaboration, D-meson production in p-Pb collisions at \( \sqrt{s_{\mathrm{N}\;\mathrm{N}}}=5.02 \) TeV and in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. C 94 (2016) 054908 [arXiv:1605.07569] [INSPIRE].
ALICE collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 03 (2016) 081 [arXiv:1509.06888] [INSPIRE].
A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].
Y. Akiba et al., The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC, arXiv:1502.02730 [INSPIRE].
Y.L. Dokshitzer and D.E. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B 519 (2001) 199 [hep-ph/0106202] [INSPIRE].
M. Djordjevic and M. Gyulassy, Heavy quark radiative energy loss in QCD matter, Nucl. Phys. A 733 (2004) 265 [nucl-th/0310076] [INSPIRE].
N. Armesto, M. Cacciari, A. Dainese, C.A. Salgado and U.A. Wiedemann, How sensitive are high-p T electron spectra at RHIC to heavy quark energy loss?, Phys. Lett. B 637 (2006) 362 [hep-ph/0511257] [INSPIRE].
S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Elastic, inelastic and path length fluctuations in jet tomography, Nucl. Phys. A 784 (2007) 426 [nucl-th/0512076] [INSPIRE].
A. Adil and I. Vitev, Collisional dissociation of heavy mesons in dense QCD matter, Phys. Lett. B 649 (2007) 139 [hep-ph/0611109] [INSPIRE].
I. Vitev, J.T. Goldman, M.B. Johnson and J.W. Qiu, Open charm tomography of cold nuclear matter, Phys. Rev. D 74 (2006) 054010 [hep-ph/0605200] [INSPIRE].
Z.-B. Kang and I. Vitev, Photon-tagged heavy meson production in high energy nuclear collisions, Phys. Rev. D 84 (2011) 014034 [arXiv:1106.1493] [INSPIRE].
J. Huang, Z.-B. Kang and I. Vitev, Inclusive b-jet production in heavy ion collisions at the LHC, Phys. Lett. B 726 (2013) 251 [arXiv:1306.0909] [INSPIRE].
M. He, R.J. Fries and R. Rapp, Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach, Phys. Lett. B 735 (2014) 445 [arXiv:1401.3817] [INSPIRE].
V. Ozvenchuk, J.M. Torres-Rincon, P.B. Gossiaux, L. Tolos and J. Aichelin, D-meson propagation in hadronic matter and consequences for heavy-flavor observables in ultrarelativistic heavy-ion collisions, Phys. Rev. C 90 (2014) 054909 [arXiv:1408.4938] [INSPIRE].
S.K. Das, F. Scardina, S. Plumari and V. Greco, Toward a solution to the R AA and v 2 puzzle for heavy quarks, Phys. Lett. B 747 (2015) 260 [arXiv:1502.03757] [INSPIRE].
J. Xu, J. Liao and M. Gyulassy, Bridging Soft-Hard Transport Properties of quark-gluon Plasmas with CUJET3.0, JHEP 02 (2016) 169 [arXiv:1508.00552] [INSPIRE].
J. Huang, Z.-B. Kang, I. Vitev and H. Xing, Photon-tagged and B-meson-tagged b-jet production at the LHC, Phys. Lett. B 750 (2015) 287 [arXiv:1505.03517] [INSPIRE].
T. Song et al., Tomography of the quark-gluon-Plasma by Charm Quarks, Phys. Rev. C 92 (2015) 014910 [arXiv:1503.03039] [INSPIRE].
M. Djordjevic and M. Djordjevic, Predictions of heavy-flavor suppression at 5.1 TeV Pb+Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 92 (2015) 024918 [arXiv:1505.04316] [INSPIRE].
S. Cao, G.-Y. Qin and X.-N. Wang, Gluon contribution to open heavy-meson production in heavy-ion collisions, Phys. Rev. C 93 (2016) 024912 [arXiv:1511.04009] [INSPIRE].
S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution, Phys. Rev. C 94 (2016) 014909 [arXiv:1605.06447] [INSPIRE].
A. Idilbi and A. Majumder, Extending Soft-Collinear-Effective-Theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].
G. Ovanesyan and I. Vitev, An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung, JHEP 06 (2011) 080 [arXiv:1103.1074] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
G. Ovanesyan and I. Vitev, Medium-induced parton splitting kernels from Soft Collinear Effective Theory with Glauber gluons, Phys. Lett. B 706 (2012) 371 [arXiv:1109.5619] [INSPIRE].
M. Fickinger, G. Ovanesyan and I. Vitev, Angular distributions of higher order splitting functions in the vacuum and in dense QCD matter, JHEP 07 (2013) 059 [arXiv:1304.3497] [INSPIRE].
G. Ovanesyan, F. Ringer and I. Vitev, Initial-state splitting kernels in cold nuclear matter, Phys. Lett. B 760 (2016) 706 [arXiv:1512.00006] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, NonAbelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
Z.-B. Kang, R. Lashof-Regas, G. Ovanesyan, P. Saad and I. Vitev, Jet quenching phenomenology from soft-collinear effective theory with Glauber gluons, Phys. Rev. Lett. 114 (2015) 092002 [arXiv:1405.2612] [INSPIRE].
Y.-T. Chien, A. Emerman, Z.-B. Kang, G. Ovanesyan and I. Vitev, Jet Quenching from QCD Evolution, Phys. Rev. D 93 (2016) 074030 [arXiv:1509.02936] [INSPIRE].
Y.-T. Chien and I. Vitev, Towards the understanding of jet shapes and cross sections in heavy ion collisions using soft-collinear effective theory, JHEP 05 (2016) 023 [arXiv:1509.07257] [INSPIRE].
Y.-T. Chien, Z.-B. Kang, F. Ringer, I. Vitev and H. Xing, Jet fragmentation function in heavy ion collisions, in preparation.
I.Z. Rothstein, Factorization, power corrections and the pion form-factor, Phys. Rev. D 70 (2004) 054024 [hep-ph/0301240] [INSPIRE].
A.K. Leibovich, Z. Ligeti and M.B. Wise, Comment on quark masses in SCET, Phys. Lett. B 564 (2003) 231 [hep-ph/0303099] [INSPIRE].
P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].
P. Nason and B.R. Webber, Scaling violation in e + e − fragmentation functions: QCD evolution, hadronization and heavy quark mass effects, Nucl. Phys. B 421 (1994) 473 [Erratum ibid. B 480 (1996) 755] [INSPIRE].
M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].
M. Cacciari, S. Frixione and P. Nason, The p T spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].
T. Kneesch, B.A. Kniehl, G. Kramer and I. Schienbein, Charmed-meson fragmentation functions with finite-mass corrections, Nucl. Phys. B 799 (2008) 34 [arXiv:0712.0481] [INSPIRE].
B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Finite-mass effects on inclusive B meson hadroproduction, Phys. Rev. D 77 (2008) 014011 [arXiv:0705.4392] [INSPIRE].
C.W. Bauer and E. Mereghetti, Heavy Quark Fragmenting Jet Functions, JHEP 04 (2014) 051 [arXiv:1312.5605] [INSPIRE].
M. Fickinger, S. Fleming, C. Kim and E. Mereghetti, Effective field theory approach to heavy quark fragmentation, JHEP 11 (2016) 095 [arXiv:1606.07737] [INSPIRE].
M. Gyulassy and X.-n. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].
C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in Soft-Collinear Effective Theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].
S. Fleming, The role of Glauber exchange in soft collinear effective theory and the Balitsky-Fadin-Kuraev-Lipatov Equation, Phys. Lett. B 735 (2014) 266 [arXiv:1404.5672] [INSPIRE].
I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].
S. Catani, S. Dittmaier and Z. Trócsányi, One loop singular behavior of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222] [INSPIRE].
Z.-B. Kang and B.-W. Xiao, Sivers asymmetry of Drell-Yan production in small-x regime, Phys. Rev. D 87 (2013) 034038 [arXiv:1212.4809] [INSPIRE].
M. Baumgart, C. Marcantonini and I.W. Stewart, Systematic Improvement of Parton Showers with Effective Theory, Phys. Rev. D 83 (2011) 034011 [arXiv:1007.0758] [INSPIRE].
S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].
M. Gyulassy, I. Vitev, X.-N. Wang and P. Huovinen, Transverse expansion and high p T azimuthal asymmetry at RHIC, Phys. Lett. B 526 (2002) 301 [nucl-th/0109063] [INSPIRE].
D. Molnar and D. Sun, High-pT suppression and elliptic flow from radiative energy loss with realistic bulk medium expansion, arXiv:1305.1046 [INSPIRE].
N.-B. Chang, W.-T. Deng and X.-N. Wang, Initial conditions for the modified evolution of fragmentation functions in the nuclear medium, Phys. Rev. C 89 (2014) 034911 [arXiv:1401.5109] [INSPIRE].
F. Halzen and A.D. Martin, Quarks and leptons: An introductory course in modern particle physics, Wiley (1984).
F. Aversa, P. Chiappetta, M. Greco and J.P. Guillet, QCD Corrections to Parton-Parton Scattering Processes, Nucl. Phys. B 327 (1989) 105 [INSPIRE].
B. Jager, A. Schafer, M. Stratmann and W. Vogelsang, Next-to-leading order QCD corrections to high p T pion production in longitudinally polarized pp collisions, Phys. Rev. D 67 (2003) 054005 [hep-ph/0211007] [INSPIRE].
J.C. Collins and J.-w. Qiu, A New Derivation of the Altarelli-Parisi Equations, Phys. Rev. D 39 (1989) 1398 [INSPIRE].
G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
I. Vitev and M. Gyulassy, High p T tomography of d + Au and Au+Au at SPS, RHIC and LHC, Phys. Rev. Lett. 89 (2002) 252301 [hep-ph/0209161] [INSPIRE].
X.-f. Guo and X.-N. Wang, Multiple scattering, parton energy loss and modified fragmentation functions in deeply inelastic e A scattering, Phys. Rev. Lett. 85 (2000) 3591 [hep-ph/0005044] [INSPIRE].
J.C. Collins and W.-K. Tung, Calculating Heavy Quark Distributions, Nucl. Phys. B 278 (1986) 934 [INSPIRE].
T.P. Stavreva and J.F. Owens, Direct Photon Production in Association With A Heavy Quark At Hadron Colliders, Phys. Rev. D 79 (2009) 054017 [arXiv:0901.3791] [INSPIRE].
S. Albino, B.A. Kniehl and G. Kramer, AKK Update: Improvements from New Theoretical Input and Experimental Data, Nucl. Phys. B 803 (2008) 42 [arXiv:0803.2768] [INSPIRE].
A. Accardi, D.P. Anderle and F. Ringer, Interplay of Threshold Resummation and Hadron Mass Corrections in Deep Inelastic Processes, Phys. Rev. D 91 (2015) 034008 [arXiv:1411.3649] [INSPIRE].
T. Stavreva, F. Arleo and I. Schienbein, Prompt photon in association with a heavy-quark jet in Pb-Pb collisions at the LHC, JHEP 02 (2013) 072 [arXiv:1211.6744] [INSPIRE].
B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Open charm hadroproduction and the charm content of the proton, Phys. Rev. D 79 (2009) 094009 [arXiv:0901.4130] [INSPIRE].
B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive photoproduction of D ∗± mesons at next-to-leading order in the General-Mass Variable-Flavor-Number Scheme, Eur. Phys. J. C 62 (2009) 365 [arXiv:0902.3166] [INSPIRE].
B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive Charmed-Meson Production at the CERN LHC, Eur. Phys. J. C 72 (2012) 2082 [arXiv:1202.0439] [INSPIRE].
S. Kretzer, Fragmentation functions from flavor inclusive and flavor tagged e + e − annihilations, Phys. Rev. D 62 (2000) 054001 [hep-ph/0003177] [INSPIRE].
D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties, Phys. Rev. D 75 (2007) 114010 [hep-ph/0703242] [INSPIRE].
D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for protons and charged hadrons, Phys. Rev. D 76 (2007) 074033 [arXiv:0707.1506] [INSPIRE].
M. Hirai, S. Kumano, T.H. Nagai and K. Sudoh, Determination of fragmentation functions and their uncertainties, Phys. Rev. D 75 (2007) 094009 [hep-ph/0702250] [INSPIRE].
D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto and M. Stratmann, Parton-to-Pion Fragmentation Reloaded, Phys. Rev. D 91 (2015) 014035 [arXiv:1410.6027] [INSPIRE].
D.P. Anderle, F. Ringer and M. Stratmann, Fragmentation Functions at Next-to-Next-to-Leading Order Accuracy, Phys. Rev. D 92 (2015) 114017 [arXiv:1510.05845] [INSPIRE].
M. Epele, C.A. Garcia Canal and R. Sassot, Role of heavy quarks in light hadron fragmentation, Phys. Rev. D 94 (2016) 034037 [arXiv:1604.08427] [INSPIRE].
N. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano and A. Accardi, First Monte Carlo analysis of fragmentation functions from single-inclusive e + e − annihilation, Phys. Rev. D 94 (2016) 114004 [arXiv:1609.00899] [INSPIRE].
B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive B-Meson Production at the LHC in the GM-VFN Scheme, Phys. Rev. D 84 (2011) 094026 [arXiv:1109.2472] [INSPIRE].
B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive B-meson production at small p T in the general-mass variable-flavor-number scheme, Eur. Phys. J. C 75 (2015) 140 [arXiv:1502.01001] [INSPIRE].
M. Suzuki, Fragmentation of Hadrons from Heavy Quark Partons, Phys. Lett. 71B (1977) 139 [INSPIRE].
M.G. Bowler, e + e − Production of Heavy Quarks in the String Model, Z. Phys. C 11 (1981) 169 [INSPIRE].
C. Peterson, D. Schlatter, I. Schmitt and P.M. Zerwas, Scaling Violations in Inclusive e + e − Annihilation Spectra, Phys. Rev. D 27 (1983) 105 [INSPIRE].
E. Braaten, K.-m. Cheung, S. Fleming and T.C. Yuan, Perturbative QCD fragmentation functions as a model for heavy quark fragmentation, Phys. Rev. D 51 (1995) 4819 [hep-ph/9409316] [INSPIRE].
S.M. Moosavi Nejad and A. Armat, Heavy quark perturbative QCD fragmentation functions in the presence of hadron mass, Eur. Phys. J. Plus 128 (2013) 121 [arXiv:1307.6351] [INSPIRE].
ATLAS collaboration, Measurement of D ∗± meson production in jets from pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 052005 [arXiv:1112.4432] [INSPIRE].
M. Procura and I.W. Stewart, Quark Fragmentation within an Identified Jet, Phys. Rev. D 81 (2010) 074009 [Erratum ibid. D 83 (2011) 039902] [arXiv:0911.4980] [INSPIRE].
A. Jain, M. Procura and W.J. Waalewijn, Parton Fragmentation within an Identified Jet at NNLL, JHEP 05 (2011) 035 [arXiv:1101.4953] [INSPIRE].
F. Arleo, M. Fontannaz, J.-P. Guillet and C.L. Nguyen, Probing fragmentation functions from same-side hadron-jet momentum correlations in p-p collisions, JHEP 04 (2014) 147 [arXiv:1311.7356] [INSPIRE].
T. Kaufmann, A. Mukherjee and W. Vogelsang, Hadron Fragmentation Inside Jets in Hadronic Collisions, Phys. Rev. D 92 (2015) 054015 [arXiv:1506.01415] [INSPIRE].
Y.-T. Chien, Z.-B. Kang, F. Ringer, I. Vitev and H. Xing, Jet fragmentation functions in proton-proton collisions using soft-collinear effective theory, JHEP 05 (2016) 125 [arXiv:1512.06851] [INSPIRE].
T. Kaufmann, A. Mukherjee and W. Vogelsang, Access to Photon Fragmentation Functions in Hadronic Jet Production, Phys. Rev. D 93 (2016) 114021 [arXiv:1604.07175] [INSPIRE].
Z.-B. Kang, F. Ringer and I. Vitev, The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production, JHEP 10 (2016) 125 [arXiv:1606.06732] [INSPIRE].
Z.-B. Kang, F. Ringer and I. Vitev, Jet substructure using semi-inclusive jet functions in SCET, JHEP 11 (2016) 155 [arXiv:1606.07063] [INSPIRE].
R. Bain, L. Dai, A. Hornig, A.K. Leibovich, Y. Makris and T. Mehen, Analytic and Monte Carlo Studies of Jets with Heavy Mesons and Quarkonia, JHEP 06 (2016) 121 [arXiv:1603.06981] [INSPIRE].
J.-W. Qiu and I. Vitev, Nuclear shadowing in neutrino nucleus deeply inelastic scattering, Phys. Lett. B 587 (2004) 52 [hep-ph/0401062] [INSPIRE].
A. Accardi, Cronin effect in proton nucleus collisions: A survey of theoretical models, hep-ph/0212148 [INSPIRE].
I. Vitev, Non-Abelian energy loss in cold nuclear matter, Phys. Rev. C 75 (2007) 064906 [hep-ph/0703002] [INSPIRE].
Z.-B. Kang, I. Vitev and H. Xing, Effects of cold nuclear matter energy loss on inclusive jet production in p+A collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, Phys. Rev. C 92 (2015) 054911 [arXiv:1507.05987] [INSPIRE].
Y.-J. Lee and C. Mironov, private communication (2016).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1610.02043
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kang, ZB., Ringer, F. & Vitev, I. Effective field theory approach to open heavy flavor production in heavy-ion collisions. J. High Energ. Phys. 2017, 146 (2017). https://doi.org/10.1007/JHEP03(2017)146
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2017)146