Abstract
Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| ≪ s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators which describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCETII and SCETI. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely, certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by taking them to be in specific directions. We also discuss criteria for factorization violation.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].
I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].
I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
G.P. Korchemsky, On near forward high-energy scattering in QCD, Phys. Lett. B 325 (1994) 459 [hep-ph/9311294] [INSPIRE].
I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [INSPIRE].
I.A. Korchemskaya and G.P. Korchemsky, Evolution equation for gluon Regge trajectory, Phys. Lett. B 387 (1996) 346 [hep-ph/9607229] [INSPIRE].
L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].
I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].
I. Balitsky, High-energy QCD and Wilson lines, hep-ph/0101042 [INSPIRE].
S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].
V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to Reggeization, Phys. Rev. D 85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].
V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, The infrared structure of gauge theory amplitudes in the high-energy limit, JHEP 12 (2011) 021 [arXiv:1109.3581] [INSPIRE].
Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multi-leg scattering, arXiv:1507.00047 [INSPIRE].
G.T. Bodwin, Factorization of the Drell-Yan cross-section in perturbation theory, Phys. Rev. D 31 (1985) 2616 [Erratum ibid. D 34 (1986) 3932] [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Soft gluons and factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
G.C. Nayak, J.-W. Qiu and G.F. Sterman, Fragmentation, NRQCD and NNLO factorization analysis in heavy quarkonium production, Phys. Rev. D 72 (2005) 114012 [hep-ph/0509021] [INSPIRE].
M. Diehl, J.R. Gaunt, D. Ostermeier, P. Plößl and A. Schäfer, Cancellation of Glauber gluon exchange in the double Drell-Yan process, JHEP 01 (2016) 076 [arXiv:1510.08696] [INSPIRE].
S.M. Aybat and G.F. Sterman, Soft-gluon cancellation, phases and factorization with initial-state partons, Phys. Lett. B 671 (2009) 46 [arXiv:0811.0246] [INSPIRE].
C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2013).
M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].
A. Idilbi and A. Majumder, Extending soft-collinear-effective-theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].
F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].
G. Ovanesyan and I. Vitev, An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung, JHEP 06 (2011) 080 [arXiv:1103.1074] [INSPIRE].
G. Ovanesyan, Medium-induced splitting kernels from SCET G , Nucl. Phys. A 904-905 (2013) 981c [arXiv:1210.4945] [INSPIRE].
M. Benzke, N. Brambilla, M.A. Escobedo and A. Vairo, Gauge invariant definition of the jet quenching parameter, JHEP 02 (2013) 129 [arXiv:1208.4253] [INSPIRE].
I.Z. Rothstein and I.W. Stewart, Glauber gluons in soft-collinear effective theory, talk at the SCET 2010 workshop, https://indico.mpp.mpg.de/getFile.py/access?contribId=5&resId=0 &materialId=slides&confId=632, Germany April 2010.
C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in soft-collinear effective theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].
F. Liu and J.P. Ma, Glauber gluons in soft collinear effective theory and factorization of Drell-Yan processes, arXiv:0802.2973 [INSPIRE].
J.F. Donoghue and D. Wyler, On Regge kinematics in SCET, Phys. Rev. D 81 (2010) 114023 [arXiv:0908.4559] [INSPIRE].
J.F. Donoghue, B.K. El-Menoufi and G. Ovanesyan, Regge behavior in effective field theory, Phys. Rev. D 90 (2014) 096009 [arXiv:1405.1731] [INSPIRE].
S. Fleming, The role of Glauber exchange in soft collinear effective theory and the Balitsky-Fadin-Kuraev-Lipatov equation, Phys. Lett. B 735 (2014) 266 [arXiv:1404.5672] [INSPIRE].
J.R. Walsh and S. Zuberi, Factorization constraints on jet substructure, arXiv:1110.5333 [INSPIRE].
J. Collins and J.-W. Qiu, k T factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions, Phys. Rev. D 75 (2007) 114014 [arXiv:0705.2141] [INSPIRE].
J. Collins, 2-soft-gluon exchange and factorization breaking, arXiv:0708.4410 [INSPIRE].
P.J. Mulders and T.C. Rogers, Gauge links, TMD-factorization and TMD-factorization breaking, arXiv:1102.4569 [INSPIRE].
S.M. Aybat and T.C. Rogers, TMD-factorization, factorization breaking and evolution, arXiv:1107.3973 [INSPIRE].
S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].
J.R. Forshaw, M.H. Seymour and A. Siodmok, On the breaking of collinear factorization in QCD, JHEP 11 (2012) 066 [arXiv:1206.6363] [INSPIRE].
J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].
V. Del Duca and E.W.N. Glover, The high-energy limit of QCD at two loops, JHEP 10 (2001) 035 [hep-ph/0109028] [INSPIRE].
V. Del Duca, G. Falcioni, L. Magnea and L. Vernazza, High-energy QCD amplitudes at two loops and beyond, Phys. Lett. B 732 (2014) 233 [arXiv:1311.0304] [INSPIRE].
V. Del Duca, G. Falcioni, L. Magnea and L. Vernazza, Analyzing high-energy factorization beyond next-to-leading logarithmic accuracy, JHEP 02 (2015) 029 [arXiv:1409.8330] [INSPIRE].
I.W. Stewart, 8.EFTx: a free online graduate course on effective field theory webpage, http://web.mit.edu/eftx, (2014).
J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].
J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].
A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].
S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].
G.T. Bodwin, S.J. Brodsky and G.P. Lepage, Initial state interactions and the Drell-Yan process, Phys. Rev. Lett. 47 (1981) 1799 [INSPIRE].
M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].
G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].
G.P. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].
Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].
A.H. Hoang and I.W. Stewart, Designing gapped soft functions for jet production, Phys. Lett. B 660 (2008) 483 [arXiv:0709.3519] [INSPIRE].
R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s (m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].
V. Mateu, I.W. Stewart and J. Thaler, Power corrections to event shapes with mass-dependent operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].
D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs transverse momentum distribution at NNLL and its theoretical errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
G.F. Sterman, Mass divergences in annihilation processes. 1. Origin and nature of divergences in cut vacuum polarization diagrams, Phys. Rev. D 17 (1978) 2773 [INSPIRE].
S. Coleman and R.E. Norton, Singularities in the physical region, Nuovo Cim. 38 (1965) 438 [INSPIRE].
V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].
A.V. Manohar and I.W. Stewart, Renormalization group analysis of the QCD quark potential to order v 2, Phys. Rev. D 62 (2000) 014033 [hep-ph/9912226] [INSPIRE].
A.V. Manohar and I.W. Stewart, The QCD heavy quark potential to order v 2 : one loop matching conditions, Phys. Rev. D 62 (2000) 074015 [hep-ph/0003032] [INSPIRE].
A.V. Manohar and I.W. Stewart, Running of the heavy quark production current and 1/v potential in QCD, Phys. Rev. D 63 (2001) 054004 [hep-ph/0003107] [INSPIRE].
A.V. Manohar and I.W. Stewart, Logarithms of α in QED bound states from the renormalization group, Phys. Rev. Lett. 85 (2000) 2248 [hep-ph/0004018] [INSPIRE].
A.H. Hoang and I.W. Stewart, Ultrasoft renormalization in nonrelativistic QCD, Phys. Rev. D 67 (2003) 114020 [hep-ph/0209340] [INSPIRE].
A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].
C. Marcantonini and I.W. Stewart, Reparameterization invariant collinear operators, Phys. Rev. D 79 (2009) 065028 [arXiv:0809.1093] [INSPIRE].
A. Idilbi and I. Scimemi, Singular and regular gauges in soft collinear effective theory: the introduction of the new Wilson line T , Phys. Lett. B 695 (2011) 463 [arXiv:1009.2776] [INSPIRE].
M. Garcia-Echevarria, A. Idilbi and I. Scimemi, SCET, light-cone gauge and the T -Wilson lines, Phys. Rev. D 84 (2011) 011502 [arXiv:1104.0686] [INSPIRE].
A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].
J. Chay and C. Kim, Collinear effective theory at subleading order and its application to heavy-light currents, Phys. Rev. D 65 (2002) 114016 [hep-ph/0201197] [INSPIRE].
M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Perseus Books Publishing, U.S.A. (1995).
L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].
B. Grinstein and I.Z. Rothstein, Effective field theory and matching in nonrelativistic gauge theories, Phys. Rev. D 57 (1998) 78 [hep-ph/9703298] [INSPIRE].
C. Lee and G.F. Sterman, Universality of nonperturbative effects in event shapes, eConf C 0601121 (2006) A001 [hep-ph/0603066] [INSPIRE].
A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D 75 (2007) 114017 [hep-ph/0702022] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Power counting in the soft collinear effective theory, Phys. Rev. D 66 (2002) 054005 [hep-ph/0205289] [INSPIRE].
I.W. Stewart, Theoretical introduction to B decays and the soft collinear effective theory, hep-ph/0308185 [INSPIRE].
G.F. Sterman, Mass divergences in annihilation processes. 2. Cancellation of divergences in cut vacuum polarization diagrams, Phys. Rev. D 17 (1978) 2789 [INSPIRE].
G.F. Sterman, Partons, factorization and resummation, TASI 95, hep-ph/9606312 [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].
J.R. Gaunt, Glauber gluons and multiple parton interactions, JHEP 07 (2014) 110 [arXiv:1405.2080] [INSPIRE].
M. Zeng, Drell-Yan process with jet vetoes: breaking of generalized factorization, JHEP 10 (2015) 189 [arXiv:1507.01652] [INSPIRE].
J.R. Forshaw and M.H. Seymour, Soft gluons and superleading logarithms in QCD, Nucl. Phys. Proc. Suppl. 191 (2009) 257 [arXiv:0901.3037] [INSPIRE].
J.R. Forshaw and D.A. Ross, Quantum chromodynamics and the Pomeron, Cambridge University Press, Cambridge U.K. (1997).
B.L. Ioffe, V.S. Fadin and L.N. Lipatov, Quantum chromodynamics, Cambridge University Press, Cambridge U.K. (2010).
Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Cambridge University Press, Cambridge U.K. (2012).
S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
S. Weinberg, Dynamics at infinite momentum, Phys. Rev. 150 (1966) 1313 [INSPIRE].
H. Cheng and T.T. Wu, Expanding protons, The MIT Press, U.S.A. (1987).
R. Jackiw, D.N. Kabat and M. Ortiz, Electromagnetic fields of a massless particle and the eikonal, Phys. Lett. B 277 (1992) 148 [hep-th/9112020] [INSPIRE].
G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].
M. Levy and J. Sucher, Eikonal approximation in quantum field theory, Phys. Rev. 186 (1969) 1656 [INSPIRE].
D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys. B 388 (1992) 570 [hep-th/9203082] [INSPIRE].
S.-J. Chang, Radiative corrections to the e − e ± scattering amplitude at infinite energy, Phys. Rev. D 1 (1970) 2977 [INSPIRE].
D. Neill and I.Z. Rothstein, Classical space-times from the S matrix, Nucl. Phys. B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].
H.L. Verlinde and E.P. Verlinde, QCD at high-energies and two-dimensional field theory, hep-th/9302104 [INSPIRE].
I. Feige and M.D. Schwartz, Hard-soft-collinear factorization to all orders, Phys. Rev. D 90 (2014) 105020 [arXiv:1403.6472] [INSPIRE].
J. Chay, C. Kim, Y.G. Kim and J.-P. Lee, Soft Wilson lines in soft-collinear effective theory, Phys. Rev. D 71 (2005) 056001 [hep-ph/0412110] [INSPIRE].
C.M. Arnesen, J. Kundu and I.W. Stewart, Constraint equations for heavy-to-light currents in SCET, Phys. Rev. D 72 (2005) 114002 [hep-ph/0508214] [INSPIRE].
A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].
C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].
J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].
A.H. Hoang, A.V. Manohar and I.W. Stewart, The running Coulomb potential and Lamb shift in QCD, Phys. Rev. D 64 (2001) 014033 [hep-ph/0102257] [INSPIRE].
D. Kang, O.Z. Labun and C. Lee, Equality of hemisphere soft functions for e + e − , DIS and pp collisions at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Lett. B 748 (2015) 45 [arXiv:1504.04006] [INSPIRE].
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].
A. Papaefstathiou, J.M. Smillie and B.R. Webber, Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders, JHEP 04 (2010) 084 [arXiv:1002.4375] [INSPIRE].
F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation properties of jet vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].
M. Grazzini, A. Papaefstathiou, J.M. Smillie and B.R. Webber, Resummation of the transverse-energy distribution in Higgs boson production at the Large Hadron Collider, JHEP 09 (2014) 056 [arXiv:1403.3394] [INSPIRE].
A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].
T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].
I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL’+NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].
T. Becher, X. Garcia i Tormo and J. Piclum, Next-to-next-to-leading logarithmic resummation for transverse thrust, Phys. Rev. D 93 (2016) 054038 [arXiv:1512.00022] [INSPIRE].
J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].
S. Mantry, D. Pirjol and I.W. Stewart, Strong phases and factorization for color suppressed decays, Phys. Rev. D 68 (2003) 114009 [hep-ph/0306254] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1601.04695
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Rothstein, I.Z., Stewart, I.W. An effective field theory for forward scattering and factorization violation. J. High Energ. Phys. 2016, 25 (2016). https://doi.org/10.1007/JHEP08(2016)025
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2016)025