Abstract
There is growing evidence for the usefulness of name permutations when dealing with syntax involving names and name-binding. In particular they facilitate an attractively simple formalisation of common, but often technically incorrect uses of structural recursion and induction for abstract syntax trees modulo α-equivalence. At the heart of this formalisation is the notion of finitely supported mathematical objects. This paper explains the idea in as concrete a way as possible and gives a new derivation within higher-order logic of principles of α-structural recursion and induction for α-equivalence classes from the ordinary versions of these principles for abstract syntax trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam (1984) (revised edition)
Cheney, J.: Nominal Logic Programming. PhD thesis, Cornell University (August 2004)
Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56–68 (1940)
de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indag. Math. 34, 381–392 (1972)
Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: Proc. LICS 1999, pp. 193–202. IEEE Computer Society Press, Los Alamitos (1999)
Gabbay, M.J.: A Theory of Inductive Definitions with α-Equivalence: Semantics, Implementation, Programming Language. PhD thesis, University of Cambridge (2000)
Gabbay, M.J.: FM-HOL, a higher-order theory of names. In: Kamareddine, F. (ed.) Workshop on Thirty Five years of Automath, Informal Proceedings, April 2002, Heriot-Watt University, Edinburgh (2002)
Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2002)
Gordon, A.D., Melham, T.: Five axioms of alpha-conversion. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–191. Springer, Heidelberg (1996)
Griffin, T.G.: Notational definition — a formal account. In: Proc. LICS 1988, pp. 372–383. IEEE Computer Society Press, Los Alamitos (1988)
Gunter, C.A.: Semantics of Programming Languages: Structures and Techniques. MIT Press, Cambridge (1992)
Honsell, F., Miculan, M., Scagnetto, I.: An axiomatic approach to metareasoning on nominal algebras in HOAS. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 963–978. Springer, Heidelberg (2001)
Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge University Press, Cambridge (1986)
Norrish, M.: Recursive function definition for types with binders. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 241–256. Springer, Heidelberg (2004)
Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Proc. PLDI 1988, pp. 199–208. ACM Press, New York (1988)
Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information and Computation 186, 165–193 (2003)
Plotkin, G.D.: An illative theory of relations. In: Cooper, R., Mukai, K., Perry, J. (eds.) Situation Theory and its Applications. CSLI Lecture Notes, vol. 1, 22, pp. 133–146. Stanford University (1990)
Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)
Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)
Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science (2005) (To appear)
Stoughton, A.: Substitution revisited. Theoretical Computer Science 59, 317–325 (1988)
Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer Science 323, 473–497 (2004)
Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Proc. CADE-20. LNCS. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pitts, A.M. (2005). Alpha-Structural Recursion and Induction. In: Hurd, J., Melham, T. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2005. Lecture Notes in Computer Science, vol 3603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11541868_2
Download citation
DOI: https://doi.org/10.1007/11541868_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28372-0
Online ISBN: 978-3-540-31820-0
eBook Packages: Computer ScienceComputer Science (R0)