Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recursive Function Definition for Types with Binders

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3223))

Included in the following conference series:

Abstract

This work describes the proof and uses of a theorem allowing definition of recursive functions over the type of λ-calculus terms, where terms with bound variables are identified up to α-equivalence. The theorem embodies what is effectively a principle of primitive recursion, and the analogues of this theorem for other types with binders are clear. The theorem’s side-conditions require that the putative definition be well-behaved with respect to fresh name generation and name permutation. A number of examples over the type of λ-calculus terms illustrate the use of the new principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambler, S.J., Crole, R.L., Momigliano, A.: A definitional approach to primitive recursion over higher order abstract syntax. In: Honsell et al. [6], Available at http://doi.acm.org/10.1145/976571.976572

  2. Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics, revised edn. Studies in Logic and the Foundations of Mathematics, vol. 103. Elsevier, Amsterdam (1984)

    Google Scholar 

  3. Gabbay, M.J.: A Theory of Inductive Definitions with Alpha-Equivalence. PhD thesis, University of Cambridge (2001)

    Google Scholar 

  4. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: 14th Annual Symposium on Logic in Computer Science, pp. 214–224. IEEE Computer Society Press, Washington (1999)

    Google Scholar 

  5. Gordon, D., Melham, T.: Five axioms of alpha conversion. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996)

    Google Scholar 

  6. Honsell, F., Miculan, M., Momigliano, A. (eds.): Merlin 2003, Proceedings of the Second ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable Binding. ACM Digital Library (2003)

    Google Scholar 

  7. Norrish, M.: Mechanising Hankin and Barendregt using the Gordon-Melham axioms. In: Honsell et al. [6], Available at http://doi.acm.org/10.1145/976571.976577

  8. Schürmann, C., Despeyroux, J., Pfenning, F.: Primitive recursion for higherorder abstract syntax. Theoretical Computer Science 266(1-2), 1–57 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Washburn, G., Weirich, S.: Boxes go bananas: Encoding higher-order abstract syntax with parametric polymophism. In: ICFP 2003: Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, pp. 249–262. ACM Press, New York (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Norrish, M. (2004). Recursive Function Definition for Types with Binders. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2004. Lecture Notes in Computer Science, vol 3223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30142-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30142-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23017-5

  • Online ISBN: 978-3-540-30142-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics