Abstract
This work describes the proof and uses of a theorem allowing definition of recursive functions over the type of λ-calculus terms, where terms with bound variables are identified up to α-equivalence. The theorem embodies what is effectively a principle of primitive recursion, and the analogues of this theorem for other types with binders are clear. The theorem’s side-conditions require that the putative definition be well-behaved with respect to fresh name generation and name permutation. A number of examples over the type of λ-calculus terms illustrate the use of the new principle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambler, S.J., Crole, R.L., Momigliano, A.: A definitional approach to primitive recursion over higher order abstract syntax. In: Honsell et al. [6], Available at http://doi.acm.org/10.1145/976571.976572
Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics, revised edn. Studies in Logic and the Foundations of Mathematics, vol. 103. Elsevier, Amsterdam (1984)
Gabbay, M.J.: A Theory of Inductive Definitions with Alpha-Equivalence. PhD thesis, University of Cambridge (2001)
Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: 14th Annual Symposium on Logic in Computer Science, pp. 214–224. IEEE Computer Society Press, Washington (1999)
Gordon, D., Melham, T.: Five axioms of alpha conversion. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996)
Honsell, F., Miculan, M., Momigliano, A. (eds.): Merlin 2003, Proceedings of the Second ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable Binding. ACM Digital Library (2003)
Norrish, M.: Mechanising Hankin and Barendregt using the Gordon-Melham axioms. In: Honsell et al. [6], Available at http://doi.acm.org/10.1145/976571.976577
Schürmann, C., Despeyroux, J., Pfenning, F.: Primitive recursion for higherorder abstract syntax. Theoretical Computer Science 266(1-2), 1–57 (2001)
Washburn, G., Weirich, S.: Boxes go bananas: Encoding higher-order abstract syntax with parametric polymophism. In: ICFP 2003: Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, pp. 249–262. ACM Press, New York (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Norrish, M. (2004). Recursive Function Definition for Types with Binders. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2004. Lecture Notes in Computer Science, vol 3223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30142-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-30142-4_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23017-5
Online ISBN: 978-3-540-30142-4
eBook Packages: Springer Book Archive