Abstract
The assessment of the quality of volunteered geographic information (VGI) is cornerstone to understand the fitness for purpose of datasets in many application domains. While most analyses focus on geometric and positional quality, only sporadic attention has been devoted to the interpretation of the data, i.e., the communication process through which consumers try to reconstruct the meaning of information intended by its producers. Interpretability is a notoriously ephemeral, culturally rooted, and context-dependent property of the data that concerns the conceptual quality of the vocabularies, schemas, ontologies, and documentation used to describe and annotate the geographic features of interest. To operationalize conceptual quality in VGI, we propose a multi-faceted framework that includes accuracy, granularity, completeness, consistency, compliance, and richness, proposing proxy measures for each dimension. The application of the framework is illustrated in a case study on a European sample of OpenStreetMap, focused specifically on conceptual compliance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ballatore, A.: Defacing the map: cartographic vandalism in the digital commons. Cartographic J. 51(3), 214–224 (2014)
Ballatore, A., Bertolotto, M.: Semantically enriching VGI in support of implicit feedback analysis. In: Tanaka, K., Fröhlich, P., Kim, K.S. (eds.) W2GIS 2011. LNCS, vol. 6574, pp. 78–93. Springer, Heidelberg (2010)
Ballatore, A., Bertolotto, M., Wilson, D.: Computing the semantic similarity of geographic terms using volunteered lexical definitions. Int. J. Geograph. Inf. Sci. 27(10), 2099–2118 (2013a)
Ballatore, A., Wilson, D.C., Bertolotto, M.: A survey of volunteered open geo-knowledge bases in the semantic web. In: Pasi, G., Bordogna, G., Jain, L.C. (eds.) Quality Issues in the Management of Web Information. ISRL, vol. 50, pp. 93–120. Springer, Heidelberg (2013b)
Barron, C., Neis, P., Zipf, A.: A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans. GIS 18(6), 877–895 (2014)
Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques. Springer, Berlin (2006)
Bishr, M., Kuhn, W.: Trust and reputation models for quality assessment of human sensor observations. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 53–73. Springer, Heidelberg (2013)
Burton-Jones, A., Storey, V., Sugumaran, V., Ahluwalia, P.: A semiotic metrics suite for assessing the quality of ontologies. Data Knowl. Eng. 55(1), 84–102 (2005)
Si-said Cherfi, S., Akoka, J., Comyn-Wattiau, I.: Conceptual modeling quality - from EER to UML schemas evaluation. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 414–428. Springer, Heidelberg (2002)
Dodge, M., Kitchin, R.: Crowdsourced cartography: mapping experience and knowledge. Environ. Plan. A 45(1), 19–36 (2013)
Flanagin, A.J., Metzger, M.J.: The credibility of volunteered geographic information. GeoJournal 72(3–4), 137–148 (2008)
Frank, A.U.: Spatial communication with maps: defining the correctness of maps using a multi-agent simulation. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, pp. 80–99. Springer, Heidelberg (2000)
Goodchild, M.F., Gopal, S.: The Accuracy of Spatial Databases. CRC Press, Boca Raton (1989)
Goodchild, M.F., Li, L.: Assuring the quality of volunteered geographic information. Spat. Stat. 1, 110–120 (2012)
Guarino, N., Welty, C.A.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn, pp. 201–220. Springer, Berlin (2009)
Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn, pp. 1–17. Springer, Berlin (2009)
Guptill, S., Morrison, J. (eds.): Elements of Spatial Data Quality. Elsevier, Oxford (1995)
Haklay, M.: How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan. B Plan. Des. 37, 682–703 (2010)
Haklay, M., Basiouka, S., Antoniou, V., Ather, A.: How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. Cartographic J. 47(4), 315–322 (2010)
Heipke, C.: Crowdsourcing geospatial data. ISPRS J. Photogrammetry Remote Sens. 65(6), 550–557 (2010)
Hunter, G., Bregt, A., Heuvelink, G., Bruin, S., Virrantaus, K.: Spatial data quality: problems and prospects. Research Trends in Geographic Information Science, LNGC, pp. 101–121. Springer, Berlin (2009)
Kuhn, W.: Core concepts of spatial information for transdisciplinary research. Int. J. Geogr. Inf. Sc. 26(12), 2267–2276 (2012)
Mooney, P., Corcoran, P.: Characteristics of heavily edited objects in OpenStreetMap. Future Internet 4(1), 285–305 (2012a)
Mooney, P., Corcoran, P.: The annotation process in OpenStreetMap. Trans. GIS 16(4), 561–579 (2012b)
Rosch, E.: Principles of categorization. In: Margolis, E., Laurence, S. (eds.) Concepts: Core Readings, pp. 189–206. MIT Press, Cambridge (1999)
Salgé, F.: Semantic accuracy. In: Guptill, S., Morrison, J. (eds.) Elements of Spatial Data Quality, pp. 139–151. Elsevier, Oxford (1995)
Shi, W., Fisher, P., Goodchild, M.F. (eds.): Spatial Data Quality. CRC Press, Boca Raton (2003)
Solskinnsbakk, G., Gulla, J.A., Haderlein, V., Myrseth, P., Cerrato, O.: Quality of hierarchies in ontologies and folksonomies. Data Knowl. Eng. 74, 13–25 (2012)
Stephens, M.: Gender and the GeoWeb: divisions in the production of user-generated cartographic information. GeoJournal 78(6), 981–996 (2013)
Tartir, S., Arpinar, I., Moore, M., Sheth, A., Aleman-Meza, B.: OntoQA: metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, at the 5th IEEE International Conference on Data Mining 2005, ICDM 2005, pp. 1–9. IEEE (2005)
Van Damme, C., Hepp, M., Coenen, T.: Quality metrics for tags of broad folksonomies. In: Proceedings of International Conference on Semantic Systems (I-SEMANTICS), Graz, Austria, pp. 118–125 (2008)
Veregin, H.: Data quality measurement and assessment. NCGIA Core Curriculum in Geographic Information Science (1998). http://www.ncgia.ucsb.edu/giscc/units/u100/u100_f.html
Zielstra, D., Zipf, A.: A comparative study of proprietary geodata and volunteered geographic information for Germany. In: Painho, M., Santos, M.Y., Pundt, H. (eds.) Proceedings of the 13th AGILE International Conference on Geographic Information Science, pp. 1–15 (2010)
Acknowledgments
The authors thank Sophie Crommelinck and Sarah Labusga (University of Heidelberg) for the implementation of the case study, and the OpenStreetMap community for supplying the data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ballatore, A., Zipf, A. (2015). A Conceptual Quality Framework for Volunteered Geographic Information. In: Fabrikant, S., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds) Spatial Information Theory. COSIT 2015. Lecture Notes in Computer Science(), vol 9368. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-23374-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23373-4
Online ISBN: 978-3-319-23374-1
eBook Packages: Computer ScienceComputer Science (R0)