Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quality Assessment of Volunteered Geographic Information: A Survey

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems LVII

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 14970))

  • 71 Accesses

Abstract

Traditionally, government and national mapping agencies have been a primary provider of authoritative geospatial information. Today, with the exponential proliferation of Information and Communication Technologies or ICTs (such as GPS, mobile mapping and geo-localized web applications, social media), any user becomes able to produce geospatial information. This participatory production of geographical data gives birth to the concept of Volunteered Geographic Information (VGI). This phenomenon has greatly contributed to the production of huge amounts of heterogeneous data (structured data, textual documents, images, videos, etc.). It has emerged as a potential source of geographic information in many application areas. Despite the various advantages associated with it, this information lacks often quality assurance, since it is provided by diverse user profiles. To address this issue, numerous research studies have been proposed to assess VGI quality in order to help extract relevant content. This work attempts to provide an overall review of VGI quality assessment methods over the last decade. It also investigates varied quality assessment attributes adopted in recent works. Moreover, it presents a classification that forms a basis for future research. Finally, it discusses in detail the relevance and the main limitations of existing approaches and outlines some guidelines for future developments.

S. Sassi, R. Chbeir and S. Faiz—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 12.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.google.com/maps.

  2. 2.

    https://www.google.com/earth/.

  3. 3.

    https://www.bing.com/maps/.

  4. 4.

    https://openstreetmap.org/.

  5. 5.

    https://www.dropbox.com/s/3p6u3x7gij2wadx/POP%20Result%20fo%20VGI.xlsx?dl=0.

  6. 6.

    https://www.dropbox.com/s/4dipl0tlc1tim4r/POP%20Result%20selected.xlsx?dl=0.

  7. 7.

    http://www.iso.org.

  8. 8.

    https://www.iso.org/technical-committees.html.

  9. 9.

    https://wiki.openstreetmap.org.

  10. 10.

    ISO 8402:1994 https://www.iso.org/standard/20115.html.

References

  1. Goodchild, M.F., Li, L.: Assuring the quality of volunteered geographic information. Spat. Stat. 1, 110–120 (2012)

    Article  Google Scholar 

  2. Fonte, C.C., et al.: Assessing VGI data quality. Mapp. Citizen Sens. 137–163 (2017)

    Google Scholar 

  3. Haworth, B., Bruce, E.: A review of volunteered geographic information for disaster management. Geogr. Compass 9, 237–250 (2015)

    Article  Google Scholar 

  4. Kaewkitipong, L., Chen, C., Ractham, P.: Lessons learned from the use of social media in combating a crisis: a case study of 2011 Thailand flooding disaster (2012)

    Google Scholar 

  5. Chatfield, A.T., Brajawidagda, U.: Twitter early tsunami warning system: a case study in Indonesia’s natural disaster management, pp. 2050–2060. IEEE (2013)

    Google Scholar 

  6. Shah, A.A., Ravana, S.D., Hamid, S., Ismail, M.A.: Web credibility assessment: affecting factors and assessment techniques (2015)

    Google Scholar 

  7. Antoniou, V., Skopeliti, A.: Measures and indicators of VGI quality: an overview. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. 2 (2015)

    Google Scholar 

  8. Eshghi, M., Alesheikh, A.: Assessment of completeness and positional accuracy of linear features in volunteered geographic information (VGI). Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 40, 169 (2015)

    Article  Google Scholar 

  9. Hung, K.-C., Kalantari, M., Rajabifard, A.: Methods for assessing the credibility of volunteered geographic information in flood response: a case study in Brisbane, Australia. Appl. Geogr. 68, 37–47 (2016)

    Article  Google Scholar 

  10. Langley, S.A., Messina, J.P., Moore, N.: Using meta-quality to assess the utility of volunteered geographic information for science. Int. J. Health Geogr. 16, 1–11 (2017)

    Article  Google Scholar 

  11. Jabeur, N., Karam, R., Melchiori, M., Renso, C.: A comprehensive reputation assessment framework for volunteered geographic information in crowdsensing applications. Pers. Ubiquit. Comput. 23, 669–685 (2019)

    Article  Google Scholar 

  12. El Hatimi, B., Oulidi, H.J., Fadil, A.: Quality assessment in volunteered geographic information for risk management applications, pp. 1–4. IEEE (2020)

    Google Scholar 

  13. Senaratne, H., Mobasheri, A., Ali, A.L., Capineri, C., Haklay, M.: A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 31, 139–167 (2017)

    Article  Google Scholar 

  14. Câmara, J.H.S., Lisboa-Filho, J., de Souza, W.D., Pereira, R.O.: Quality attributes and methods for VGI. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 306–321. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_24

    Chapter  Google Scholar 

  15. Degrossi, L.C., Porto de Albuquerque, J., dos Santos Rocha, R., Zipf, A.: A framework of quality assessment methods for crowdsourced geographic information: a systematic literature review (2017)

    Google Scholar 

  16. Degrossi, L.C., Porto de Albuquerque, J., Santos Rocha, R.D., Zipf, A.: A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information. Trans. GIS 22, 542–560 (2018)

    Google Scholar 

  17. Medeiros, G., Holanda, M.: Solutions for data quality in GIS and VGI: a systematic literature review. New Knowl. Inf. Syst. Technol. 1, 645–654 (2019)

    Google Scholar 

  18. Bordogna, G., Carrara, P., Criscuolo, L., Pepe, M., Rampini, A.: On predicting and improving the quality of volunteer geographic information projects. Int. J. Digit. Earth 9, 134–155 (2016)

    Article  Google Scholar 

  19. Ramasamy, A., Chowdhury, S.: Big data quality dimensions: a systematic literature review. JISTEM-J. Inf. Syst. Technol. Manage. 17 (2020)

    Google Scholar 

  20. Ardagna, D., Cappiello, C., Samá, W., Vitali, M.: Context-aware data quality assessment for big data. Futur. Gener. Comput. Syst. 89, 548–562 (2018)

    Article  Google Scholar 

  21. Salvatore, C., Biffignandi, S., Bianchi, A.: Social media and twitter data quality for new social indicators. Soc. Indic. Res. 156, 601–630 (2021)

    Article  Google Scholar 

  22. Albuquerque, J.P.D., Fonte, C., Almeida, J.-P.D., Cardoso, A.: How volunteered geographic information can be integrated into emergency management practice? First lessons learned from an urban fire simulation in the city of Coimbra, 269-276 (2016)

    Google Scholar 

  23. Jacobs, K.T., Mitchell, S.W.: OpenStreetMap quality assessment using unsupervised machine learning methods. Trans. GIS 24, 1280–1298 (2020)

    Article  Google Scholar 

  24. Dama. Defining data quality dimensions (2013)

    Google Scholar 

  25. Girres, J.-F., Touya, G.: Quality assessment of the French OpenStreetMap dataset. Trans. GIS 14, 435–459 (2010)

    Article  Google Scholar 

  26. Zielstra, D., Hochmair, H.H., Neis, P.: Assessing the effect of data imports on the completeness of OpenStreetMap-a United States case study. Trans. GIS 17, 315–334 (2013)

    Article  Google Scholar 

  27. Mas, J.-F., et al.: A suite of tools for assessing thematic map accuracy. Geogr. J. 2014 (2014)

    Google Scholar 

  28. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14 (2015)

    Google Scholar 

  29. Fonte, C., et al.: VGI quality control. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. 2, 317–324 (2015)

    Google Scholar 

  30. ISO. ISO 19157: 2013 geographic information - data quality (2013)

    Google Scholar 

  31. Mohammadi, N., Malek, M.: Artificial intelligence-based solution to estimate the spatial accuracy of volunteered geographic data. J. Spat. Sci. 60, 119–135 (2015)

    Article  Google Scholar 

  32. Ali, A.L., Schmid, F.: Data quality assurance for volunteered geographic information. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 126–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11593-1_9

    Chapter  Google Scholar 

  33. Bishr, M., Kuhn, W.: Trust and reputation models for quality assessment of human sensor observations. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 53–73. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01790-7_4

    Chapter  Google Scholar 

  34. Kesler, C., De Groot, R.T.A.: Trust as a proxy measure for the quality of volunteered geographic information in the case of OpenStreetMap. Geogr. Inf. Sci. Heart Eur. 21–37 (2013)

    Google Scholar 

  35. Bodnar, T., Tucker, C., Hopkinson, K., Bilén, S.G.: Increasing the veracity of event detection on social media networks through user trust modeling, pp. 636–643. IEEE (2014)

    Google Scholar 

  36. Uyeda, K.A., Stow, D.A., Richart, C.H.: Assessment of volunteered geographic information for vegetation mapping. Environ. Monit. Assess. 192, 554 (2020)

    Article  Google Scholar 

  37. Vandecasteele, A., Devillers, R.: Improving volunteered geographic data quality using semantic similarity measurements. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 1, 143–8 (2013)

    Article  Google Scholar 

  38. Jackson, S.P., et al.: Assessing completeness and spatial error of features in volunteered geographic information. ISPRS Int. J. Geo Inf. 2, 507–530 (2013)

    Article  Google Scholar 

  39. Forati, A.M., Ghose, R.: Volunteered geographic information users contributions pattern and its impact on information quality (2020)

    Google Scholar 

  40. Mooney, P., Corcoran, P., Winstanley, A.C.: Towards quality metrics for OpenStreetMap, pp. 514–517 (2010)

    Google Scholar 

  41. Seto, T., Kanasugi, H., Nishimura, Y.: Quality verification of volunteered geographic information using OSM notes data in a global context. ISPRS Int. J. Geo Inf. 9, 372 (2020)

    Article  Google Scholar 

  42. Fogliaroni, P., D’Antonio, F., Clementini, E.: Data trustworthiness and user reputation as indicators of VGI quality. Geo-Spat. Inf. Sci. 21, 213–233 (2018)

    Article  Google Scholar 

  43. Ballatore, A., Zipf, A.: A conceptual quality framework for volunteered geographic information. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp. 89–107. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23374-1_5

    Chapter  Google Scholar 

  44. Khalfi, B.: Modélisation et construction des bases de données géographiques floues et maintien de la cohérence de mod‘eles pour les sgbd sql et nosql. Université PARIS (2017)

    Google Scholar 

  45. Ali, A.L., Schmid, F., Al-Salman, R., Kauppinen, T.: Ambiguity and plausibility: managing classification quality in volunteered geographic information, pp. 143–152 (2014)

    Google Scholar 

  46. Severinsen, J., de Roiste, M., Reitsma, F., Hartato, E.: VGTrust: measuring trust for volunteered geographic information. Int. J. Geogr. Inf. Sci. 33, 1683–1701 (2019)

    Article  Google Scholar 

  47. Goodchild, M.F.: Academic pursuits-uncertainty: the Achilles heel of GIS? Geo Info Systems 8, 50–52 (1998)

    Google Scholar 

  48. Bégin, D., Devillers, R., Roche, S.: Assessing volunteered geographic information (vgi) quality based on contributors’ mapping behaviours. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2013, 149-154 (2013)

    Google Scholar 

  49. Idris, N.H., Jackson, M., Ishak, M.: A conceptual model of the automated credibility assessment of the volunteered geographic information, vol. 18, p. 012070. IOP Publishing (2014)

    Google Scholar 

  50. De Tré, G., et al.: Data quality assessment in volunteered geographic decision support. In: Bordogna, G., Carrara, P. (eds.) Mobile Information Systems Leveraging Volunteered Geographic Information for Earth Observation. ESDM, vol. 4, pp. 173–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70878-2_9

    Chapter  Google Scholar 

  51. Bimonte, S., Boucelma, O., Machabert, O., Sellami, S.: From volunteered geographic information to volunteered geographic OLAP: a VGI data quality-based approach. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8582, pp. 69–80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09147-1_6

    Chapter  Google Scholar 

  52. Moreri, K.K., Fairbairn, D., James, P.: Volunteered geographic information quality assessment using trust and reputation modelling in land administration systems in developing countries. Int. J. Geogr. Inf. Sci. 32, 931–959 (2018)

    Article  Google Scholar 

  53. Albakri, M.M.: Semantic similarity assessment of volunteered geographic information. J. Eng. 22, 215–229 (2016)

    Article  Google Scholar 

  54. Barron, C., Neis, P., Zipf, A.: A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans. GIS 18, 877–895 (2014)

    Article  Google Scholar 

  55. Yanenko, O., Schlieder, C.: Enhancing the quality of volunteered geographic information: a constraint-based approach. In: Gensel, J., Josselin, D., Vandenbroucke, D. (eds.) Bridging the Geographic Information Sciences. Lecture Notes in Geoinformation and Cartography, pp. 429–446. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29063-3_23

    Chapter  Google Scholar 

  56. Koukoletsos, T., Haklay, M., Ellul, C.: Assessing data completeness of VGI through an automated matching procedure for linear data. Trans. GIS 16, 477–498 (2012)

    Article  Google Scholar 

  57. Karimipour, F., Esmaeili, R., Navratil, G.: Cartographic representation of spatial data quality parameters in volunteered geographic information (2013)

    Google Scholar 

  58. Arsanjani, J.J., Barron, C., Bakillah, M., Helbich, M.: Assessing the quality of openstreetmap contributors together with their contributions, pp. 14–17 (2013)

    Google Scholar 

  59. Fan, H., Zipf, A., Fu, Q., Neis, P.: Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 28, 700–719 (2014)

    Article  Google Scholar 

  60. Herfort, B., Eckle, M., de Albuquerque, J.P., Zipf, A.: Towards assessing the quality of volunteered geographic information from OpenStreetMap for identifying critical infrastructures. Citeseer (2015)

    Google Scholar 

  61. Vandecasteele, A., Devillers, R.: Improving volunteered geographic information quality using a tag recommender system: the case of OpenStreetMap. OpenStreetMap GISci.: Experiences Res. Appl. 59–80 (2015)

    Google Scholar 

  62. Lodigiani, C., Melchiori, M.: A PageRank-based reputation model for VGI data. Procedia Comput. Sci. 98, 566–571 (2016)

    Article  Google Scholar 

  63. de Albuquerque, J.P., Fan, H., Zipf, A.: A conceptual model for quality assessment of VGI for the purpose of flood management, pp. 14–17 (2016)

    Google Scholar 

  64. Klonner, C., Eckle, M., Usón, T., Höfle, B.: Quality improvement of remotely volunteered geographic information via country-specific mapping instructions (2017)

    Google Scholar 

  65. Vahidi, H., Klinkenberg, B., Yan, W.: A fuzzy system for quality assurance of crowdsourced wildlife observation geodata, pp. 55–58. IEEE (2017)

    Google Scholar 

  66. Gusmini, M., Jabeur, N., Karam, R., Melchiori, M., Renso, C.: Evaluating reputation in VGI-enabled applications (2017)

    Google Scholar 

  67. Sehra, S.S., Singh, J., Rai, H.S.: Assessing OpenStreetMap data using intrinsic quality indicators: an extension to the QGIS processing toolbox. Future Internet 9, 15 (2017)

    Article  Google Scholar 

  68. Muzaffar, H.M., Tahir, A., Ali, A., Ahmad, M., McArdle, G.: Quality assessment of volunteered geographic information for educational planning, pp. 76–96. IGI Global (2017)

    Google Scholar 

  69. Chehreghan, A., Ali Abbaspour, R.: An evaluation of data completeness of VGI through geometric similarity assessment. Int. J. Image Data Fusion 9, 319–337 (2018)

    Google Scholar 

  70. Zhang, H., Malczewski, J.: Accuracy evaluation of the Canadian Openstreetmap road networks. Int. J. Geospat. Environ. Res. 5 (2017)

    Google Scholar 

  71. Ibrahim, M.H., Darwish, N.R., Hefny, H.A.: An approach to control the positional accuracy of point features in volunteered geographic information systems. Int. J. Adv. Comput. Sci. Appl. 10 (2019)

    Google Scholar 

  72. Wu, H., et al.: A comprehensive quality assessment framework for linear features from volunteered geographic information. Int. J. Geogr. Inf. Sci. 35, 1826–1847 (2021)

    Article  Google Scholar 

  73. Teimoory, N., Ali Abbaspour, R., Chehreghan, A.: Reliability extracted from the history file as an intrinsic indicator for assessing the quality of OpenStreetMap. Earth Sci. Inform. 14, 1413–1432 (2021)

    Article  Google Scholar 

  74. Bordogna, G.: A semantic approach for quality assurance and assessment of volunteered geographic information. Information 12, 492 (2021)

    Article  Google Scholar 

  75. Safariallahkheili, Q., Malek, M.R.: A method for assessing the credibility of volunteered geographic information in case of flood crisis. Procedia Comput. Sci. 207, 1611–1622 (2022)

    Article  Google Scholar 

  76. Zhao, Y., Wei, X., Liu, Y., Liao, Z.: A reputation model of OSM contributor based on semantic similarity of ontology concepts. Appl. Sci. 12, 11363 (2022)

    Article  Google Scholar 

  77. Foody, G., Long, G., Schultz, M., Olteanu-Raimond, A.-M.: Assuring the quality of VGI on land use and land cover: experiences and learnings from the landsense project. Geo-Spat. Inf. Sci. 1–22 (2022)

    Google Scholar 

  78. Ullah, T., Lautenbach, S., Herfort, B., Reinmuth, M., Schorlemmer, D.: Assessing completeness of OpenStreetMap building footprints using mapswipe. ISPRS Int. J. Geo Inf. 12, 143 (2023)

    Article  Google Scholar 

  79. Kilic, B., Hacar, M., Gülgen, F.: Effects of reverse geocoding on OpenStreetMap tag quality assessment. Trans. GIS 27, 1599–1613 (2023)

    Article  Google Scholar 

  80. Azariasgari, E., Hosseinali, F.: Evaluating the VGI users’ level of expertise: an application of statistical and artificial neural network approaches. Int. J. Appl. Geospat. Res. 14 (2023)

    Google Scholar 

  81. Comber, A., et al.: Using control data to determine the reliability of volunteered geographic information about land cover. Int. J. Appl. Earth Obs. Geoinf. 23, 37–48 (2013)

    Google Scholar 

  82. Foody, G.M., et al.: Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Trans. GIS 17, 847–860 (2013)

    Article  Google Scholar 

  83. de Souza, W.D., Lisboa Filho, J., Vidal Filho, J.N., Câmara, J.H.: DM4VGI: a template with dynamic metadata for documenting and validating the quality of volunteered geographic information, pp. 1–12. Citeseer (2013)

    Google Scholar 

  84. Esmaili, R., Naseri, F., Esmaili, A.: Quality assessment of volunteered geographic information. Am. J. Geogr. Inf. Syst. 2, 19–26 (2013)

    Google Scholar 

  85. Camponovo, M.E., Freundschuh, S.M.: Assessing uncertainty in VGI for emergency response. Cartogr. Geogr. Inf. Sci. 41, 440–455 (2014)

    Article  Google Scholar 

  86. Foody, G.M., et al.: Accurate attribute mapping from volunteered geographic information: issues of volunteer quantity and quality. Cartogr. J. 52, 336–344 (2015)

    Article  Google Scholar 

  87. Goodhue, P., Delikostidis, I.: Modelling information quality and source reliability to improve the trust of volunteered geographic information (2017)

    Google Scholar 

  88. Vahidi, H., Klinkenberg, B., Yan, W.: Trust as a proxy indicator for intrinsic quality of volunteered geographic information in biodiversity monitoring programs. GISci. Remote Sens. 55, 502–538 (2018)

    Article  Google Scholar 

  89. Honarparvar, S., Malek, M.R., Saeedi, S., Liang, S.: Towards development of a real-time point feature quality assessment method for volunteered geographic information using the internet of things. ISPRS Int. J. Geo- Inf. 10, 151 (2021)

    Article  Google Scholar 

  90. Hou, Y., Biljecki, F.: A comprehensive framework for evaluating the quality of street view imagery. Int. J. Appl. Earth Obs. Geoinf. 115, 103094 (2022)

    Google Scholar 

  91. Forati, A.M., Karimipour, F.: A VGI quality assessment method for VGI based on trustworthiness. GI Forum 4, 3–11 (2016)

    Google Scholar 

  92. Dasgupta, A., Ghosh, S.K., Mitra, P.: A technique for assessing the quality of volunteered geographic information for disaster decision making. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10960, pp. 589–597. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95162-1_40

    Chapter  Google Scholar 

  93. Koswatte, S., McDougall, K., Liu, X.: VGI and crowdsourced data credibility analysis using spam email detection techniques. Int. J. Digit. Earth 11, 520–532 (2018)

    Article  Google Scholar 

  94. Ostermann, F.O., Spinsanti, L.: A conceptual workflow for automatically assessing the quality of volunteered geographic information for crisis management, vol. 2011, pp. 1–6 (2011)

    Google Scholar 

  95. Flanagin, A.J., Metzger, M.J.: The credibility of volunteered geographic information. GeoJournal 72, 137–148 (2008)

    Article  Google Scholar 

  96. Yanenko, O.: Volunteered geographic information and data quality-the case of social reporting (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donia Nciri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nciri, D., Sassi, S., Chbeir, R., Faiz, S. (2025). Quality Assessment of Volunteered Geographic Information: A Survey. In: Hameurlain, A., Tjoa, A.M. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems LVII. Lecture Notes in Computer Science(), vol 14970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-70140-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-70140-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-70142-3

  • Online ISBN: 978-3-662-70140-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics