Abstract
Traditionally, government and national mapping agencies have been a primary provider of authoritative geospatial information. Today, with the exponential proliferation of Information and Communication Technologies or ICTs (such as GPS, mobile mapping and geo-localized web applications, social media), any user becomes able to produce geospatial information. This participatory production of geographical data gives birth to the concept of Volunteered Geographic Information (VGI). This phenomenon has greatly contributed to the production of huge amounts of heterogeneous data (structured data, textual documents, images, videos, etc.). It has emerged as a potential source of geographic information in many application areas. Despite the various advantages associated with it, this information lacks often quality assurance, since it is provided by diverse user profiles. To address this issue, numerous research studies have been proposed to assess VGI quality in order to help extract relevant content. This work attempts to provide an overall review of VGI quality assessment methods over the last decade. It also investigates varied quality assessment attributes adopted in recent works. Moreover, it presents a classification that forms a basis for future research. Finally, it discusses in detail the relevance and the main limitations of existing approaches and outlines some guidelines for future developments.
S. Sassi, R. Chbeir and S. Faiz—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
ISO 8402:1994 https://www.iso.org/standard/20115.html.
References
Goodchild, M.F., Li, L.: Assuring the quality of volunteered geographic information. Spat. Stat. 1, 110–120 (2012)
Fonte, C.C., et al.: Assessing VGI data quality. Mapp. Citizen Sens. 137–163 (2017)
Haworth, B., Bruce, E.: A review of volunteered geographic information for disaster management. Geogr. Compass 9, 237–250 (2015)
Kaewkitipong, L., Chen, C., Ractham, P.: Lessons learned from the use of social media in combating a crisis: a case study of 2011 Thailand flooding disaster (2012)
Chatfield, A.T., Brajawidagda, U.: Twitter early tsunami warning system: a case study in Indonesia’s natural disaster management, pp. 2050–2060. IEEE (2013)
Shah, A.A., Ravana, S.D., Hamid, S., Ismail, M.A.: Web credibility assessment: affecting factors and assessment techniques (2015)
Antoniou, V., Skopeliti, A.: Measures and indicators of VGI quality: an overview. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. 2 (2015)
Eshghi, M., Alesheikh, A.: Assessment of completeness and positional accuracy of linear features in volunteered geographic information (VGI). Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 40, 169 (2015)
Hung, K.-C., Kalantari, M., Rajabifard, A.: Methods for assessing the credibility of volunteered geographic information in flood response: a case study in Brisbane, Australia. Appl. Geogr. 68, 37–47 (2016)
Langley, S.A., Messina, J.P., Moore, N.: Using meta-quality to assess the utility of volunteered geographic information for science. Int. J. Health Geogr. 16, 1–11 (2017)
Jabeur, N., Karam, R., Melchiori, M., Renso, C.: A comprehensive reputation assessment framework for volunteered geographic information in crowdsensing applications. Pers. Ubiquit. Comput. 23, 669–685 (2019)
El Hatimi, B., Oulidi, H.J., Fadil, A.: Quality assessment in volunteered geographic information for risk management applications, pp. 1–4. IEEE (2020)
Senaratne, H., Mobasheri, A., Ali, A.L., Capineri, C., Haklay, M.: A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 31, 139–167 (2017)
Câmara, J.H.S., Lisboa-Filho, J., de Souza, W.D., Pereira, R.O.: Quality attributes and methods for VGI. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 306–321. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_24
Degrossi, L.C., Porto de Albuquerque, J., dos Santos Rocha, R., Zipf, A.: A framework of quality assessment methods for crowdsourced geographic information: a systematic literature review (2017)
Degrossi, L.C., Porto de Albuquerque, J., Santos Rocha, R.D., Zipf, A.: A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information. Trans. GIS 22, 542–560 (2018)
Medeiros, G., Holanda, M.: Solutions for data quality in GIS and VGI: a systematic literature review. New Knowl. Inf. Syst. Technol. 1, 645–654 (2019)
Bordogna, G., Carrara, P., Criscuolo, L., Pepe, M., Rampini, A.: On predicting and improving the quality of volunteer geographic information projects. Int. J. Digit. Earth 9, 134–155 (2016)
Ramasamy, A., Chowdhury, S.: Big data quality dimensions: a systematic literature review. JISTEM-J. Inf. Syst. Technol. Manage. 17 (2020)
Ardagna, D., Cappiello, C., Samá, W., Vitali, M.: Context-aware data quality assessment for big data. Futur. Gener. Comput. Syst. 89, 548–562 (2018)
Salvatore, C., Biffignandi, S., Bianchi, A.: Social media and twitter data quality for new social indicators. Soc. Indic. Res. 156, 601–630 (2021)
Albuquerque, J.P.D., Fonte, C., Almeida, J.-P.D., Cardoso, A.: How volunteered geographic information can be integrated into emergency management practice? First lessons learned from an urban fire simulation in the city of Coimbra, 269-276 (2016)
Jacobs, K.T., Mitchell, S.W.: OpenStreetMap quality assessment using unsupervised machine learning methods. Trans. GIS 24, 1280–1298 (2020)
Dama. Defining data quality dimensions (2013)
Girres, J.-F., Touya, G.: Quality assessment of the French OpenStreetMap dataset. Trans. GIS 14, 435–459 (2010)
Zielstra, D., Hochmair, H.H., Neis, P.: Assessing the effect of data imports on the completeness of OpenStreetMap-a United States case study. Trans. GIS 17, 315–334 (2013)
Mas, J.-F., et al.: A suite of tools for assessing thematic map accuracy. Geogr. J. 2014 (2014)
Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14 (2015)
Fonte, C., et al.: VGI quality control. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. 2, 317–324 (2015)
ISO. ISO 19157: 2013 geographic information - data quality (2013)
Mohammadi, N., Malek, M.: Artificial intelligence-based solution to estimate the spatial accuracy of volunteered geographic data. J. Spat. Sci. 60, 119–135 (2015)
Ali, A.L., Schmid, F.: Data quality assurance for volunteered geographic information. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 126–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11593-1_9
Bishr, M., Kuhn, W.: Trust and reputation models for quality assessment of human sensor observations. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 53–73. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01790-7_4
Kesler, C., De Groot, R.T.A.: Trust as a proxy measure for the quality of volunteered geographic information in the case of OpenStreetMap. Geogr. Inf. Sci. Heart Eur. 21–37 (2013)
Bodnar, T., Tucker, C., Hopkinson, K., Bilén, S.G.: Increasing the veracity of event detection on social media networks through user trust modeling, pp. 636–643. IEEE (2014)
Uyeda, K.A., Stow, D.A., Richart, C.H.: Assessment of volunteered geographic information for vegetation mapping. Environ. Monit. Assess. 192, 554 (2020)
Vandecasteele, A., Devillers, R.: Improving volunteered geographic data quality using semantic similarity measurements. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 1, 143–8 (2013)
Jackson, S.P., et al.: Assessing completeness and spatial error of features in volunteered geographic information. ISPRS Int. J. Geo Inf. 2, 507–530 (2013)
Forati, A.M., Ghose, R.: Volunteered geographic information users contributions pattern and its impact on information quality (2020)
Mooney, P., Corcoran, P., Winstanley, A.C.: Towards quality metrics for OpenStreetMap, pp. 514–517 (2010)
Seto, T., Kanasugi, H., Nishimura, Y.: Quality verification of volunteered geographic information using OSM notes data in a global context. ISPRS Int. J. Geo Inf. 9, 372 (2020)
Fogliaroni, P., D’Antonio, F., Clementini, E.: Data trustworthiness and user reputation as indicators of VGI quality. Geo-Spat. Inf. Sci. 21, 213–233 (2018)
Ballatore, A., Zipf, A.: A conceptual quality framework for volunteered geographic information. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp. 89–107. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23374-1_5
Khalfi, B.: Modélisation et construction des bases de données géographiques floues et maintien de la cohérence de mod‘eles pour les sgbd sql et nosql. Université PARIS (2017)
Ali, A.L., Schmid, F., Al-Salman, R., Kauppinen, T.: Ambiguity and plausibility: managing classification quality in volunteered geographic information, pp. 143–152 (2014)
Severinsen, J., de Roiste, M., Reitsma, F., Hartato, E.: VGTrust: measuring trust for volunteered geographic information. Int. J. Geogr. Inf. Sci. 33, 1683–1701 (2019)
Goodchild, M.F.: Academic pursuits-uncertainty: the Achilles heel of GIS? Geo Info Systems 8, 50–52 (1998)
Bégin, D., Devillers, R., Roche, S.: Assessing volunteered geographic information (vgi) quality based on contributors’ mapping behaviours. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2013, 149-154 (2013)
Idris, N.H., Jackson, M., Ishak, M.: A conceptual model of the automated credibility assessment of the volunteered geographic information, vol. 18, p. 012070. IOP Publishing (2014)
De Tré, G., et al.: Data quality assessment in volunteered geographic decision support. In: Bordogna, G., Carrara, P. (eds.) Mobile Information Systems Leveraging Volunteered Geographic Information for Earth Observation. ESDM, vol. 4, pp. 173–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70878-2_9
Bimonte, S., Boucelma, O., Machabert, O., Sellami, S.: From volunteered geographic information to volunteered geographic OLAP: a VGI data quality-based approach. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8582, pp. 69–80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09147-1_6
Moreri, K.K., Fairbairn, D., James, P.: Volunteered geographic information quality assessment using trust and reputation modelling in land administration systems in developing countries. Int. J. Geogr. Inf. Sci. 32, 931–959 (2018)
Albakri, M.M.: Semantic similarity assessment of volunteered geographic information. J. Eng. 22, 215–229 (2016)
Barron, C., Neis, P., Zipf, A.: A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans. GIS 18, 877–895 (2014)
Yanenko, O., Schlieder, C.: Enhancing the quality of volunteered geographic information: a constraint-based approach. In: Gensel, J., Josselin, D., Vandenbroucke, D. (eds.) Bridging the Geographic Information Sciences. Lecture Notes in Geoinformation and Cartography, pp. 429–446. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29063-3_23
Koukoletsos, T., Haklay, M., Ellul, C.: Assessing data completeness of VGI through an automated matching procedure for linear data. Trans. GIS 16, 477–498 (2012)
Karimipour, F., Esmaeili, R., Navratil, G.: Cartographic representation of spatial data quality parameters in volunteered geographic information (2013)
Arsanjani, J.J., Barron, C., Bakillah, M., Helbich, M.: Assessing the quality of openstreetmap contributors together with their contributions, pp. 14–17 (2013)
Fan, H., Zipf, A., Fu, Q., Neis, P.: Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 28, 700–719 (2014)
Herfort, B., Eckle, M., de Albuquerque, J.P., Zipf, A.: Towards assessing the quality of volunteered geographic information from OpenStreetMap for identifying critical infrastructures. Citeseer (2015)
Vandecasteele, A., Devillers, R.: Improving volunteered geographic information quality using a tag recommender system: the case of OpenStreetMap. OpenStreetMap GISci.: Experiences Res. Appl. 59–80 (2015)
Lodigiani, C., Melchiori, M.: A PageRank-based reputation model for VGI data. Procedia Comput. Sci. 98, 566–571 (2016)
de Albuquerque, J.P., Fan, H., Zipf, A.: A conceptual model for quality assessment of VGI for the purpose of flood management, pp. 14–17 (2016)
Klonner, C., Eckle, M., Usón, T., Höfle, B.: Quality improvement of remotely volunteered geographic information via country-specific mapping instructions (2017)
Vahidi, H., Klinkenberg, B., Yan, W.: A fuzzy system for quality assurance of crowdsourced wildlife observation geodata, pp. 55–58. IEEE (2017)
Gusmini, M., Jabeur, N., Karam, R., Melchiori, M., Renso, C.: Evaluating reputation in VGI-enabled applications (2017)
Sehra, S.S., Singh, J., Rai, H.S.: Assessing OpenStreetMap data using intrinsic quality indicators: an extension to the QGIS processing toolbox. Future Internet 9, 15 (2017)
Muzaffar, H.M., Tahir, A., Ali, A., Ahmad, M., McArdle, G.: Quality assessment of volunteered geographic information for educational planning, pp. 76–96. IGI Global (2017)
Chehreghan, A., Ali Abbaspour, R.: An evaluation of data completeness of VGI through geometric similarity assessment. Int. J. Image Data Fusion 9, 319–337 (2018)
Zhang, H., Malczewski, J.: Accuracy evaluation of the Canadian Openstreetmap road networks. Int. J. Geospat. Environ. Res. 5 (2017)
Ibrahim, M.H., Darwish, N.R., Hefny, H.A.: An approach to control the positional accuracy of point features in volunteered geographic information systems. Int. J. Adv. Comput. Sci. Appl. 10 (2019)
Wu, H., et al.: A comprehensive quality assessment framework for linear features from volunteered geographic information. Int. J. Geogr. Inf. Sci. 35, 1826–1847 (2021)
Teimoory, N., Ali Abbaspour, R., Chehreghan, A.: Reliability extracted from the history file as an intrinsic indicator for assessing the quality of OpenStreetMap. Earth Sci. Inform. 14, 1413–1432 (2021)
Bordogna, G.: A semantic approach for quality assurance and assessment of volunteered geographic information. Information 12, 492 (2021)
Safariallahkheili, Q., Malek, M.R.: A method for assessing the credibility of volunteered geographic information in case of flood crisis. Procedia Comput. Sci. 207, 1611–1622 (2022)
Zhao, Y., Wei, X., Liu, Y., Liao, Z.: A reputation model of OSM contributor based on semantic similarity of ontology concepts. Appl. Sci. 12, 11363 (2022)
Foody, G., Long, G., Schultz, M., Olteanu-Raimond, A.-M.: Assuring the quality of VGI on land use and land cover: experiences and learnings from the landsense project. Geo-Spat. Inf. Sci. 1–22 (2022)
Ullah, T., Lautenbach, S., Herfort, B., Reinmuth, M., Schorlemmer, D.: Assessing completeness of OpenStreetMap building footprints using mapswipe. ISPRS Int. J. Geo Inf. 12, 143 (2023)
Kilic, B., Hacar, M., Gülgen, F.: Effects of reverse geocoding on OpenStreetMap tag quality assessment. Trans. GIS 27, 1599–1613 (2023)
Azariasgari, E., Hosseinali, F.: Evaluating the VGI users’ level of expertise: an application of statistical and artificial neural network approaches. Int. J. Appl. Geospat. Res. 14 (2023)
Comber, A., et al.: Using control data to determine the reliability of volunteered geographic information about land cover. Int. J. Appl. Earth Obs. Geoinf. 23, 37–48 (2013)
Foody, G.M., et al.: Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Trans. GIS 17, 847–860 (2013)
de Souza, W.D., Lisboa Filho, J., Vidal Filho, J.N., Câmara, J.H.: DM4VGI: a template with dynamic metadata for documenting and validating the quality of volunteered geographic information, pp. 1–12. Citeseer (2013)
Esmaili, R., Naseri, F., Esmaili, A.: Quality assessment of volunteered geographic information. Am. J. Geogr. Inf. Syst. 2, 19–26 (2013)
Camponovo, M.E., Freundschuh, S.M.: Assessing uncertainty in VGI for emergency response. Cartogr. Geogr. Inf. Sci. 41, 440–455 (2014)
Foody, G.M., et al.: Accurate attribute mapping from volunteered geographic information: issues of volunteer quantity and quality. Cartogr. J. 52, 336–344 (2015)
Goodhue, P., Delikostidis, I.: Modelling information quality and source reliability to improve the trust of volunteered geographic information (2017)
Vahidi, H., Klinkenberg, B., Yan, W.: Trust as a proxy indicator for intrinsic quality of volunteered geographic information in biodiversity monitoring programs. GISci. Remote Sens. 55, 502–538 (2018)
Honarparvar, S., Malek, M.R., Saeedi, S., Liang, S.: Towards development of a real-time point feature quality assessment method for volunteered geographic information using the internet of things. ISPRS Int. J. Geo- Inf. 10, 151 (2021)
Hou, Y., Biljecki, F.: A comprehensive framework for evaluating the quality of street view imagery. Int. J. Appl. Earth Obs. Geoinf. 115, 103094 (2022)
Forati, A.M., Karimipour, F.: A VGI quality assessment method for VGI based on trustworthiness. GI Forum 4, 3–11 (2016)
Dasgupta, A., Ghosh, S.K., Mitra, P.: A technique for assessing the quality of volunteered geographic information for disaster decision making. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10960, pp. 589–597. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95162-1_40
Koswatte, S., McDougall, K., Liu, X.: VGI and crowdsourced data credibility analysis using spam email detection techniques. Int. J. Digit. Earth 11, 520–532 (2018)
Ostermann, F.O., Spinsanti, L.: A conceptual workflow for automatically assessing the quality of volunteered geographic information for crisis management, vol. 2011, pp. 1–6 (2011)
Flanagin, A.J., Metzger, M.J.: The credibility of volunteered geographic information. GeoJournal 72, 137–148 (2008)
Yanenko, O.: Volunteered geographic information and data quality-the case of social reporting (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature
About this chapter
Cite this chapter
Nciri, D., Sassi, S., Chbeir, R., Faiz, S. (2025). Quality Assessment of Volunteered Geographic Information: A Survey. In: Hameurlain, A., Tjoa, A.M. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems LVII. Lecture Notes in Computer Science(), vol 14970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-70140-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-70140-9_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-70142-3
Online ISBN: 978-3-662-70140-9
eBook Packages: Computer ScienceComputer Science (R0)