Nothing Special   »   [go: up one dir, main page]

Skip to main content

Preference Elicitation for DCOPs

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10416))

Abstract

Distributed Constraint Optimization Problems (DCOPs) offer a powerful approach for the description and resolution of cooperative multi-agent problems. In this model, a group of agents coordinate their actions to optimize a global objective function, taking into account their preferences or constraints. A core limitation of this model is the assumption that the preferences of all agents or the costs of all constraints are specified a priori. Unfortunately, this assumption does not hold in a number of application domains where preferences or constraints must be elicited from the users. One of such domains is the Smart Home Device Scheduling (SHDS) problem. Motivated by this limitation, we make the following contributions in this paper: (1) We propose a general model for preference elicitation in DCOPs; (2) We propose several heuristics to elicit preferences in DCOPs; and (3) We empirically evaluate the effect of these heuristics on random binary DCOPs as well as SHDS problems.

This research is partially supported by NSF grant 1345232. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies, or the U.S. government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Other forms of distributions can also be used, but our minimax regret heuristics require that the form of the distributions have the following property: The sum of two distributions has the same form as their individual distributions.

  2. 2.

    https://www.pge.com/en_US/business/rate-plans/rate-plans/peak-day-pricing/peak-day-pricing.page. Retrieved in November 2016.

References

  1. Abdennadher, S., Schlenker, H.: Nurse scheduling using constraint logic programming. In: Proceedings of the Conference on Innovative Applications of Artificial Intelligence (IAAI), pp. 838–843 (1999)

    Google Scholar 

  2. Anderson, B., Lin, S., Newing, A., Bahaj, A., James, P.: Electricity consumption and household characteristics: implications for census-taking in a smart metered future. Comput. Environ. Urban Syst. 63, 58–67 (2017)

    Article  Google Scholar 

  3. Bacchus, F., Grove, A.J.: Utility independence in a qualitative decision theory. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 542–552 (1996)

    Google Scholar 

  4. Boutilier, C.: A POMDP formulation of preference elicitation problems. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 239–246 (2002)

    Google Scholar 

  5. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Regret-based utility elicitation in constraint-based decision problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 929–934 (2005)

    Google Scholar 

  6. Braziunas, D.: Computational approaches to preference elicitation. Technical report (2006)

    Google Scholar 

  7. Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proceedings of the Conference in Uncertainty in Artificial Intelligence (UAI), pp. 42–49 (2005)

    Google Scholar 

  8. Erdös, P., Rényi, A.: On random graphs, I. Publ. Math. (Debr.) 6, 290–297 (1959)

    MATH  Google Scholar 

  9. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power embedded devices using the Max-Sum algorithm. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 639–646 (2008)

    Google Scholar 

  10. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. CoRR, abs/1602.06347 (2016)

    Google Scholar 

  11. Fioretto, F. Yeoh, W., Pontelli, E.: A dynamic programming-based MCMC framework for solving DCOPs with GPUs. In: Proceedings of Principles and Practice of Constraint Programming (CP), pp. 813–831 (2016)

    Google Scholar 

  12. Fioretto, F., Yeoh, W., Pontelli, E.: Multi-variable agent decomposition for DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2016)

    Google Scholar 

  13. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling devices in smart homes. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)

    Google Scholar 

  14. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A DCOP approach to the economic dispatch with demand response. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)

    Google Scholar 

  15. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies for fuzzy constraint problems with missing preferences: algorithms and experimental studies. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 402–417. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_27

    Chapter  Google Scholar 

  16. Goldsmith, J., Junker, U.: Preference handling for artificial intelligence. AI Mag. 29(4), 9–12 (2008)

    Article  Google Scholar 

  17. Hatano, D., Hirayama, K.: DeQED: an efficient divide-and-coordinate algorithm for DCOP. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 566–572 (2013)

    Google Scholar 

  18. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Proceedings of the Workshop on Data Mining Applications in Sustainability, pp. 59–62 (2011)

    Google Scholar 

  20. Larrosa, J.: Node and arc consistency in weighted CSP. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 48–53 (2002)

    Google Scholar 

  21. Le, T., Fioretto, F., Yeoh, W., Son, T.C., Pontelli, E.: ER-DCOPs: a framework for distributed constraint optimization with uncertainty in constraint utilities. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2016)

    Google Scholar 

  22. Le, T., Son, T.C., Pontelli, E., Yeoh, W.: Solving distributed constraint optimization problems with logic programming. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2015)

    Google Scholar 

  23. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: a graphical game-based approach. In: Proceedings of the International Conference on Parallel and Distributed Computing Systems (PDCS), pp. 432–439 (2004)

    Google Scholar 

  24. Miller, S., Ramchurn, S., Rogers, A.: Optimal decentralised dispatch of embedded generation in the smart grid. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 281–288 (2012)

    Google Scholar 

  25. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Article  Google Scholar 

  26. Modi, P.: Distributed constraint optimization for multiagent systems. Ph.D. thesis, University of Southern California, Los Angeles (United States) (2003)

    Google Scholar 

  27. Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Netzer, A., Grubshtein, A., Meisels, A.: Concurrent forward bounding for distributed constraint optimization problems. Artif. Intell. 193, 186–216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen, D.T., Yeoh, W., Lau, H.C., Gibbs, D.: A memory-bounded sampling-based DCOP algorithm. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 167–174 (2013)

    Google Scholar 

  30. Nguyen, D.T., Yeoh, W., Lau, H.C., Zilberstein, S., Zhang, C.: Decentralized multi-agent reinforcement learning in average-reward dynamic DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1447–1455 (2014)

    Google Scholar 

  31. Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: an upper confidence bound approach to distributed constraint optimization problems. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 528–534 (2012)

    Google Scholar 

  32. Paatero, J.V., Lund, P.D.: A model for generating household electricity load profiles. Int. J. Energy Res. 30(5), 273–290 (2006)

    Article  Google Scholar 

  33. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1413–1420 (2005)

    Google Scholar 

  34. Rodrigues, L., Magatao, L.: Enhancing supply chain decisions using constraint programming: a case study. In: Proceedings of the Mexican International Conference on Artificial Intelligence (MICAI), pp. 1110–1121 (2007)

    Google Scholar 

  35. Rossi, F., Venable, K.B., Walsh, T.: Preferences in constraint satisfaction and optimization. AI Mag. 29(4), 58–68 (2008)

    Article  Google Scholar 

  36. Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE Trans. Pattern Anal. Mach. Intell. 5, 504–519 (1981)

    Article  Google Scholar 

  37. Stranders, R., Delle Fave, F., Rogers, A., Jennings, N.: DCOPs and bandits: exploration and exploitation in decentralised coordination. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 289–297 (2012)

    Google Scholar 

  38. Stuckey, P.J., Becket, R., Brand, S., Brown, M., Feydy, T., Fischer, J., de la Banda, M.G., Marriott, K., Wallace, M.: The evolving world of MiniZinc. In: Constraint Modelling and Reformulation, pp. 156–170 (2007)

    Google Scholar 

  39. Taylor, M., Jain, M., Tandon, P., Yokoo, M., Tambe, M.: Distributed on-line multi-agent optimization under uncertainty: balancing exploration and exploitation. Adv. Complex Syst. 14(03), 471–528 (2011)

    Article  Google Scholar 

  40. Ueda, S., Iwasaki, A., Yokoo, M.: Coalition structure generation based on distributed constraint optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 197–203 (2010)

    Google Scholar 

  41. Vinyals, M., Rodríguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law. J. Auton. Agents Multi-Agent Syst. 22(3), 439–464 (2011)

    Article  Google Scholar 

  42. Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 309–318 (2003)

    Google Scholar 

  43. Wu, F., Jennings, N.: Regret-based multi-agent coordination with uncertain task rewards. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1492–1499 (2014)

    Google Scholar 

  44. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)

    MATH  Google Scholar 

  45. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Mag. 33(3), 53–65 (2012)

    Article  Google Scholar 

  46. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. Artif. Intell. 212, 1–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint optimization for teams of mobile sensing agents. J. Auton. Agents Multi-Agent Syst. 29(3), 495–536 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atena M. Tabakhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tabakhi, A.M., Le, T., Fioretto, F., Yeoh, W. (2017). Preference Elicitation for DCOPs. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66158-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66157-5

  • Online ISBN: 978-3-319-66158-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics