Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two-Round Oblivious Linear Evaluation from Learning with Errors

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13177))

Included in the following conference series:

Abstract

Oblivious Linear Evaluation (OLE) is the arithmetic analogue of the well-know oblivious transfer primitive. It allows a sender, holding an affine function \(f(x)=a+bx\) over a finite field or ring, to let a receiver learn f(w) for a w of the receiver’s choice. In terms of security, the sender remains oblivious of the receiver’s input w, whereas the receiver learns nothing beyond f(w) about f. In recent years, OLE has emerged as an essential building block to construct efficient, reusable and maliciously-secure two-party computation.

In this work, we present efficient two-round protocols for OLE over large fields based on the Learning with Errors (LWE) assumption, providing a full arithmetic generalization of the oblivious transfer protocol of Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the technical core of our work is a novel extraction technique which allows to determine if a non-trivial multiple of some vector is close to a q-ary lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is easy to see that, if we consider the affine function \(f:\{0,1\}\rightarrow \{0,1\}\) such that \(f(b)=m_0+b(m_1-m_0)\), OLE trivially implements OT.

  2. 2.

    While two-party reusable non-interactive secure computation (NISC) is impossible in the OT-hybrid model [11], reusable NISC for general Boolean circuits is known to be possible in the (reusable) OLE-hybrid model assuming one-way functions [11]. The result stated above is meaningful only if we have access to a reusable two-round OLE protocol. The only efficient realizations of this primitive are based on the Decisional Composite Residuosity (DCR) and the Quadratic Residuosity assumptions [11].

  3. 3.

    As an example consider the work of [11], where the Paillier cryptosystem is extended into an OLE protocol with malicious security and the construction is highly non-trivial.

  4. 4.

    Despite numerous efforts, HPS in the lattice setting fall short in efficiency when comparing to their group-based counterpart.

  5. 5.

    The protocol presented in Sect. 5 is presented in a slightly, but equivalent, form.

  6. 6.

    The approach is similar in spirit as previous works, e.g. [25].

  7. 7.

    The construction actually works for any OLE scheme that is secure against semi-honest senders and malicious receivers. In the technical sections we present the generic construction.

  8. 8.

    The matrix \(\mathbf {B}\) is called a basis of \(\varLambda (\mathbf {B})\).

References

  1. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8

    Chapter  Google Scholar 

  2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 120–129 (2011)

    Google Scholar 

  3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(4), 625–636 (1993). http://eudml.org/doc/165105

  4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  5. Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.: Efficient protocols for oblivious linear function evaluation from ring-LWE. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 130–149. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_7

    Chapter  Google Scholar 

  6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 896–912. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3243734.3243868

  7. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14

    Chapter  Google Scholar 

  8. Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation from learning with errors. Cryptology ePrint Archive, Report 2020/635 (2020). https://ia.cr/2020/635

  9. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145 (2001)

    Google Scholar 

  10. de Castro, L., Juvekar, C., Vaikuntanathan, V.: Fast vector oblivious linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685 (2020). https://eprint.iacr.org/2020/685

  11. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_15

    Chapter  Google Scholar 

  12. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_26

    Chapter  Google Scholar 

  13. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient actively secure two-party computation from oblivious linear function evaluation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 2263–2276. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3133956.3134024

  14. Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32284-6_7

    Chapter  MATH  Google Scholar 

  15. Döttling, N., Kraschewski, D., Müller-Quade, J.: David & Goliath oblivious affine function evaluation - asymptotically optimal building blocks for universally composable two-party computation from a single untrusted stateful tamper-proof hardware token. Cryptology ePrint Archive, Report 2012/135 (2012). https://eprint.iacr.org/2012/135

  16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008). https://doi.org/10.1145/1374376.1374407

  17. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_22

    Chapter  Google Scholar 

  18. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_6

    Chapter  Google Scholar 

  19. Ghosh, S., Simkin, M.: The communication complexity of threshold private set intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_1

    Chapter  Google Scholar 

  20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 307–328 (2019)

    Google Scholar 

  21. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA: lightweight secure arithmetic computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 327–344. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3319535.3354258

  22. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18

    Chapter  Google Scholar 

  23. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: Proceedings of the 27th USENIX Conference on Security Symposium, SEC 2018, pp. 1651–1668. USENIX Association, USA (2018)

    Google Scholar 

  24. Lempel, M., Paz, A.: An algorithm for finding a shortest vector in a two-dimensional modular lattice. Theor. Comput. Sci. 125(2), 229–241 (1994). http://www.sciencedirect.com/science/article/pii/030439759200021I

  25. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_4

    Chapter  MATH  Google Scholar 

  26. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/S0097539705447360

  28. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38 (2017)

    Google Scholar 

  29. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  30. Quach, W.: UC-secure OT from LWE, revisited. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 192–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_10

    Chapter  Google Scholar 

  31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 84–93. ACM, New York (2005). https://doi.org/10.1145/1060590.1060603

  32. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164 (1982)

    Google Scholar 

Download references

Acknowledgment

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through the grant PD/BD/135181/2017. Part of the work was done while the author was at CISPA.

Pedro Branco and Paulo Mateus are partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UIDB/50008/2020 (Instituto de Telecomunicações via actions QuRUNNER, QUESTS) and Projects QuantumMining POCI-01-0145-FEDER-031826, PREDICT PTDC/CCI-CIF/29877/2017 and QuantumPrime PTDC/EEI-TEL/8017/2020.

Nico Döttling was supported by the Helmholtz Association within the project “Trustworthy Federated Data Analytics” (TFDA) (funding number ZT-I- OO1 4).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Branco, P., Döttling, N., Mateus, P. (2022). Two-Round Oblivious Linear Evaluation from Learning with Errors. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13177. Springer, Cham. https://doi.org/10.1007/978-3-030-97121-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97121-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97120-5

  • Online ISBN: 978-3-030-97121-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics