Abstract
Oblivious Linear Evaluation (OLE) is the arithmetic analogue of the well-know oblivious transfer primitive. It allows a sender, holding an affine function \(f(x)=a+bx\) over a finite field or ring, to let a receiver learn f(w) for a w of the receiver’s choice. In terms of security, the sender remains oblivious of the receiver’s input w, whereas the receiver learns nothing beyond f(w) about f. In recent years, OLE has emerged as an essential building block to construct efficient, reusable and maliciously-secure two-party computation.
In this work, we present efficient two-round protocols for OLE over large fields based on the Learning with Errors (LWE) assumption, providing a full arithmetic generalization of the oblivious transfer protocol of Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the technical core of our work is a novel extraction technique which allows to determine if a non-trivial multiple of some vector is close to a q-ary lattice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is easy to see that, if we consider the affine function \(f:\{0,1\}\rightarrow \{0,1\}\) such that \(f(b)=m_0+b(m_1-m_0)\), OLE trivially implements OT.
- 2.
While two-party reusable non-interactive secure computation (NISC) is impossible in the OT-hybrid model [11], reusable NISC for general Boolean circuits is known to be possible in the (reusable) OLE-hybrid model assuming one-way functions [11]. The result stated above is meaningful only if we have access to a reusable two-round OLE protocol. The only efficient realizations of this primitive are based on the Decisional Composite Residuosity (DCR) and the Quadratic Residuosity assumptions [11].
- 3.
As an example consider the work of [11], where the Paillier cryptosystem is extended into an OLE protocol with malicious security and the construction is highly non-trivial.
- 4.
Despite numerous efforts, HPS in the lattice setting fall short in efficiency when comparing to their group-based counterpart.
- 5.
The protocol presented in Sect. 5 is presented in a slightly, but equivalent, form.
- 6.
The approach is similar in spirit as previous works, e.g. [25].
- 7.
The construction actually works for any OLE scheme that is secure against semi-honest senders and malicious receivers. In the technical sections we present the generic construction.
- 8.
The matrix \(\mathbf {B}\) is called a basis of \(\varLambda (\mathbf {B})\).
References
Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8
Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 120–129 (2011)
Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(4), 625–636 (1993). http://eudml.org/doc/165105
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.: Efficient protocols for oblivious linear function evaluation from ring-LWE. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 130–149. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_7
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 896–912. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3243734.3243868
Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14
Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation from learning with errors. Cryptology ePrint Archive, Report 2020/635 (2020). https://ia.cr/2020/635
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145 (2001)
de Castro, L., Juvekar, C., Vaikuntanathan, V.: Fast vector oblivious linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685 (2020). https://eprint.iacr.org/2020/685
Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_15
Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_26
Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient actively secure two-party computation from oblivious linear function evaluation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 2263–2276. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3133956.3134024
Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32284-6_7
Döttling, N., Kraschewski, D., Müller-Quade, J.: David & Goliath oblivious affine function evaluation - asymptotically optimal building blocks for universally composable two-party computation from a single untrusted stateful tamper-proof hardware token. Cryptology ePrint Archive, Report 2012/135 (2012). https://eprint.iacr.org/2012/135
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008). https://doi.org/10.1145/1374376.1374407
Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_22
Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_6
Ghosh, S., Simkin, M.: The communication complexity of threshold private set intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_1
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 307–328 (2019)
Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA: lightweight secure arithmetic computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 327–344. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3319535.3354258
Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18
Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: Proceedings of the 27th USENIX Conference on Security Symposium, SEC 2018, pp. 1651–1668. USENIX Association, USA (2018)
Lempel, M., Paz, A.: An algorithm for finding a shortest vector in a two-dimensional modular lattice. Theor. Comput. Sci. 125(2), 229–241 (1994). http://www.sciencedirect.com/science/article/pii/030439759200021I
Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_4
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/S0097539705447360
Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38 (2017)
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31
Quach, W.: UC-secure OT from LWE, revisited. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 192–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_10
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 84–93. ACM, New York (2005). https://doi.org/10.1145/1060590.1060603
Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164 (1982)
Acknowledgment
Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through the grant PD/BD/135181/2017. Part of the work was done while the author was at CISPA.
Pedro Branco and Paulo Mateus are partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UIDB/50008/2020 (Instituto de Telecomunicações via actions QuRUNNER, QUESTS) and Projects QuantumMining POCI-01-0145-FEDER-031826, PREDICT PTDC/CCI-CIF/29877/2017 and QuantumPrime PTDC/EEI-TEL/8017/2020.
Nico Döttling was supported by the Helmholtz Association within the project “Trustworthy Federated Data Analytics” (TFDA) (funding number ZT-I- OO1 4).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Branco, P., Döttling, N., Mateus, P. (2022). Two-Round Oblivious Linear Evaluation from Learning with Errors. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13177. Springer, Cham. https://doi.org/10.1007/978-3-030-97121-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-97121-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97120-5
Online ISBN: 978-3-030-97121-2
eBook Packages: Computer ScienceComputer Science (R0)